import chainer from .config import ModelConfig class Convolution1D(chainer.links.ConvolutionND): def __init__(self, in_channels, out_channels, ksize, stride=1, pad=0, nobias=False, initialW=None, initial_bias=None, cover_all=False): super(Convolution1D, self).__init__( ndim=1, in_channels=in_channels, out_channels=out_channels, ksize=ksize, stride=stride, pad=pad, nobias=nobias, initialW=initialW, initial_bias=initial_bias, cover_all=cover_all, ) class ConvHighway(chainer.link.Chain): def __init__(self, in_out_size, nobias=False, activate=chainer.functions.relu, init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1): super().__init__() self.activate = activate with self.init_scope(): self.plain = Convolution1D( in_out_size, in_out_size, 1, nobias=nobias, initialW=init_Wh, initial_bias=init_bh) self.transform = Convolution1D( in_out_size, in_out_size, 1, nobias=nobias, initialW=init_Wt, initial_bias=init_bt) def __call__(self, x): out_plain = self.activate(self.plain(x)) out_transform = chainer.functions.sigmoid(self.transform(x)) y = out_plain * out_transform + x * (1 - out_transform) return y class PreNet(chainer.link.Chain): def __init__(self, in_channels: int, hidden_channels: int, out_channels: int): super().__init__() with self.init_scope(): self.conv1 = Convolution1D(in_channels, hidden_channels, 1) self.conv2 = Convolution1D(hidden_channels, out_channels, 1) def __call__(self, x): h = x h = chainer.functions.dropout((chainer.functions.relu(self.conv1(h)), 0.5)) h = chainer.functions.dropout((chainer.functions.relu(self.conv2(h)), 0.5)) return h class Conv1DBank(chainer.link.Chain): def __init__(self, in_channels: int, out_channels: int, k: int): super().__init__() self.stacked_channels = out_channels * k self.pads = [ chainer.functions.Pad(((0, 0), (0, 0), (i // 2, (i + 1) // 2)), mode='constant') for i in range(k) ] with self.init_scope(): self.convs = chainer.link.ChainList( *(Convolution1D(in_channels, out_channels, i + 1, nobias=True) for i in range(k)) ) self.bn = chainer.links.BatchNormalization(out_channels * k) def __call__(self, x): h = x h = chainer.functions.concat([conv(pad(h)) for pad, conv in zip(self.pads, self.convs)]) h = chainer.functions.relu(self.bn(h)) return h class Conv1DProjections(chainer.link.Chain): def __init__(self, in_channels: int, hidden_channels: int, out_channels: int): super().__init__() with self.init_scope(): self.conv1 = Convolution1D(in_channels, hidden_channels, 3, pad=1, nobias=True) self.bn1 = chainer.links.BatchNormalization(hidden_channels) self.conv2 = Convolution1D(hidden_channels, out_channels, 3, pad=1, nobias=True) self.bn2 = chainer.links.BatchNormalization(out_channels) def __call__(self, x): h = x h = chainer.functions.relu(self.bn1(self.conv1(h))) h = chainer.functions.relu(self.bn2(self.conv2(h))) return h class CBHG(chainer.link.Chain): def __init__( self, in_channels: int, conv_bank_out_channels: int, conv_bank_k: int, max_pooling_k: int, conv_projections_hidden_channels: int, highway_layers: int, out_channels: int, ): super().__init__() self.max_pooling_padding = chainer.functions.Pad( ((0, 0), (0, 0), ((max_pooling_k - 1) // 2, max_pooling_k // 2)), mode='constant', ) self.max_pooling = chainer.functions.MaxPoolingND(1, max_pooling_k, 1, cover_all=False) self.out_size = out_channels * 2 with self.init_scope(): self.conv_bank = Conv1DBank( in_channels=in_channels, out_channels=conv_bank_out_channels, k=conv_bank_k, ) self.conv_projectoins = Conv1DProjections( in_channels=self.conv_bank.stacked_channels, hidden_channels=conv_projections_hidden_channels, out_channels=out_channels, ) self.highways = chainer.link.ChainList( *([ConvHighway(out_channels) for _ in range(highway_layers)]) ) self.gru = chainer.links.NStepBiGRU( n_layers=1, in_size=out_channels, out_size=out_channels, dropout=0.0, ) def __call__(self, x): h = x h = self.conv_bank(h) h = self.max_pooling(self.max_pooling_padding(h)) h = self.conv_projectoins(h) h = h + x for highway in self.highways: h = highway(h) h = chainer.functions.separate(chainer.functions.transpose(h, axes=(0, 2, 1))) _, h = self.gru(None, h) h = chainer.functions.transpose(chainer.functions.stack(h), axes=(0, 2, 1)) return h class Model(chainer.link.Chain): def __init__(self, network, out_size: int): super().__init__() with self.init_scope(): self.network = network self.last = Convolution1D(network.out_size, out_size, 1) def __call__(self, x): h = x h = self.network(h) h = self.last(h) return h def create(config: ModelConfig): network = CBHG( in_channels=config.in_channels, conv_bank_out_channels=config.conv_bank_out_channels, conv_bank_k=config.conv_bank_k, max_pooling_k=config.max_pooling_k, conv_projections_hidden_channels=config.conv_projections_hidden_channels, highway_layers=config.highway_layers, out_channels=config.out_channels, ) model = Model( network=network, out_size=config.out_size, ) return model