summaryrefslogtreecommitdiff
path: root/become_yukarin/model
diff options
context:
space:
mode:
Diffstat (limited to 'become_yukarin/model')
-rw-r--r--become_yukarin/model/model.py14
-rw-r--r--become_yukarin/model/sr_model.py10
2 files changed, 12 insertions, 12 deletions
diff --git a/become_yukarin/model/model.py b/become_yukarin/model/model.py
index fc2d722..71fb805 100644
--- a/become_yukarin/model/model.py
+++ b/become_yukarin/model/model.py
@@ -70,7 +70,7 @@ class ConvHighway(chainer.link.Chain):
class PreNet(chainer.link.Chain):
- def __init__(self, in_channels: int, hidden_channels: int, out_channels: int):
+ def __init__(self, in_channels: int, hidden_channels: int, out_channels: int) -> None:
super().__init__()
with self.init_scope():
self.conv1 = Convolution1D(in_channels, hidden_channels, 1)
@@ -84,7 +84,7 @@ class PreNet(chainer.link.Chain):
class Conv1DBank(chainer.link.Chain):
- def __init__(self, in_channels: int, out_channels: int, k: int):
+ def __init__(self, in_channels: int, out_channels: int, k: int) -> None:
super().__init__()
self.stacked_channels = out_channels * k
self.pads = [
@@ -106,7 +106,7 @@ class Conv1DBank(chainer.link.Chain):
class Conv1DProjections(chainer.link.Chain):
- def __init__(self, in_channels: int, hidden_channels: int, out_channels: int):
+ def __init__(self, in_channels: int, hidden_channels: int, out_channels: int) -> None:
super().__init__()
with self.init_scope():
@@ -133,7 +133,7 @@ class CBHG(chainer.link.Chain):
highway_layers: int,
out_channels: int,
disable_last_rnn: bool,
- ):
+ ) -> None:
super().__init__()
self.max_pooling_padding = partial(
chainer.functions.pad,
@@ -182,7 +182,7 @@ class CBHG(chainer.link.Chain):
class Predictor(chainer.link.Chain):
- def __init__(self, network, out_size: int):
+ def __init__(self, network, out_size: int) -> None:
super().__init__()
with self.init_scope():
self.network = network
@@ -196,7 +196,7 @@ class Predictor(chainer.link.Chain):
class Aligner(chainer.link.Chain):
- def __init__(self, in_size: int, out_time_length: int):
+ def __init__(self, in_size: int, out_time_length: int) -> None:
super().__init__()
with self.init_scope():
self.gru = chainer.links.NStepBiGRU(
@@ -222,7 +222,7 @@ class Aligner(chainer.link.Chain):
class Discriminator(chainer.link.Chain):
- def __init__(self, in_channels: int, hidden_channels_list: List[int]):
+ def __init__(self, in_channels: int, hidden_channels_list: List[int]) -> None:
super().__init__()
with self.init_scope():
self.convs = chainer.link.ChainList(*(
diff --git a/become_yukarin/model/sr_model.py b/become_yukarin/model/sr_model.py
index 2e83526..f8e55d6 100644
--- a/become_yukarin/model/sr_model.py
+++ b/become_yukarin/model/sr_model.py
@@ -6,7 +6,7 @@ from become_yukarin.config.sr_config import SRModelConfig
class CBR(chainer.Chain):
- def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False):
+ def __init__(self, ch0, ch1, bn=True, sample='down', activation=F.relu, dropout=False) -> None:
super().__init__()
self.bn = bn
self.activation = activation
@@ -33,7 +33,7 @@ class CBR(chainer.Chain):
class Encoder(chainer.Chain):
- def __init__(self, in_ch):
+ def __init__(self, in_ch) -> None:
super().__init__()
w = chainer.initializers.Normal(0.02)
with self.init_scope():
@@ -54,7 +54,7 @@ class Encoder(chainer.Chain):
class Decoder(chainer.Chain):
- def __init__(self, out_ch):
+ def __init__(self, out_ch) -> None:
super().__init__()
w = chainer.initializers.Normal(0.02)
with self.init_scope():
@@ -79,7 +79,7 @@ class Decoder(chainer.Chain):
class SRPredictor(chainer.Chain):
- def __init__(self, in_ch, out_ch):
+ def __init__(self, in_ch, out_ch) -> None:
super().__init__()
with self.init_scope():
self.encoder = Encoder(in_ch)
@@ -90,7 +90,7 @@ class SRPredictor(chainer.Chain):
class SRDiscriminator(chainer.Chain):
- def __init__(self, in_ch, out_ch):
+ def __init__(self, in_ch, out_ch) -> None:
super().__init__()
w = chainer.initializers.Normal(0.02)
with self.init_scope():