diff options
Diffstat (limited to 'become_yukarin/config/sr_config.py')
| -rw-r--r-- | become_yukarin/config/sr_config.py | 122 |
1 files changed, 122 insertions, 0 deletions
diff --git a/become_yukarin/config/sr_config.py b/become_yukarin/config/sr_config.py new file mode 100644 index 0000000..93db424 --- /dev/null +++ b/become_yukarin/config/sr_config.py @@ -0,0 +1,122 @@ +import json +from pathlib import Path +from typing import Dict +from typing import List +from typing import NamedTuple +from typing import Union + +from become_yukarin.param import Param + + +class SRDatasetConfig(NamedTuple): + param: Param + input_glob: Path + train_crop_size: int + seed: int + num_test: int + + +class SRModelConfig(NamedTuple): + in_channels: int + conv_bank_out_channels: int + conv_bank_k: int + max_pooling_k: int + conv_projections_hidden_channels: int + highway_layers: int + out_channels: int + out_size: int + aligner_out_time_length: int + disable_last_rnn: bool + enable_aligner: bool + + +class SRLossConfig(NamedTuple): + mse: float + adversarial: float + + +class SRTrainConfig(NamedTuple): + batchsize: int + gpu: int + log_iteration: int + snapshot_iteration: int + + +class SRProjectConfig(NamedTuple): + name: str + tags: List[str] + + +class SRConfig(NamedTuple): + dataset: SRDatasetConfig + model: SRModelConfig + loss: SRLossConfig + train: SRTrainConfig + project: SRProjectConfig + + def save_as_json(self, path): + d = _namedtuple_to_dict(self) + json.dump(d, open(path, 'w'), indent=2, sort_keys=True, default=_default_path) + + +def _default_path(o): + if isinstance(o, Path): + return str(o) + raise TypeError(repr(o) + " is not JSON serializable") + + +def _namedtuple_to_dict(o: NamedTuple): + return { + k: v if not hasattr(v, '_asdict') else _namedtuple_to_dict(v) + for k, v in o._asdict().items() + } + + +def create_from_json(s: Union[str, Path]): + try: + d = json.loads(s) + except TypeError: + d = json.load(open(s)) + + backward_compatible(d) + + return SRConfig( + dataset=SRDatasetConfig( + param=Param(), + input_glob=Path(d['dataset']['input_glob']), + train_crop_size=d['dataset']['train_crop_size'], + seed=d['dataset']['seed'], + num_test=d['dataset']['num_test'], + ), + model=SRModelConfig( + in_channels=d['model']['in_channels'], + conv_bank_out_channels=d['model']['conv_bank_out_channels'], + conv_bank_k=d['model']['conv_bank_k'], + max_pooling_k=d['model']['max_pooling_k'], + conv_projections_hidden_channels=d['model']['conv_projections_hidden_channels'], + highway_layers=d['model']['highway_layers'], + out_channels=d['model']['out_channels'], + out_size=d['model']['out_size'], + aligner_out_time_length=d['model']['aligner_out_time_length'], + disable_last_rnn=d['model']['disable_last_rnn'], + enable_aligner=d['model']['enable_aligner'], + ), + loss=SRLossConfig( + mse=d['loss']['mse'], + adversarial=d['loss']['adversarial'], + ), + train=SRTrainConfig( + batchsize=d['train']['batchsize'], + gpu=d['train']['gpu'], + log_iteration=d['train']['log_iteration'], + snapshot_iteration=d['train']['snapshot_iteration'], + ), + project=SRProjectConfig( + name=d['project']['name'], + tags=d['project']['tags'], + ) + ) + + +def backward_compatible(d: Dict): + pass |
