{"version":3,"file":"./bundle.js","sources":["webpack:///webpack/bootstrap f786037dce77e4f34c9a","webpack:///./~/tone/build/Tone.js","webpack:///./client/lib/color.js","webpack:///./client/lib/keys.js","webpack:///./client/lib/util.js","webpack:///./client/index.js","webpack:///./client/lib/startAudioContext.js"],"sourcesContent":[" \t// The module cache\n \tvar installedModules = {};\n\n \t// The require function\n \tfunction __webpack_require__(moduleId) {\n\n \t\t// Check if module is in cache\n \t\tif(installedModules[moduleId]) {\n \t\t\treturn installedModules[moduleId].exports;\n \t\t}\n \t\t// Create a new module (and put it into the cache)\n \t\tvar module = installedModules[moduleId] = {\n \t\t\ti: moduleId,\n \t\t\tl: false,\n \t\t\texports: {}\n \t\t};\n\n \t\t// Execute the module function\n \t\tmodules[moduleId].call(module.exports, module, module.exports, __webpack_require__);\n\n \t\t// Flag the module as loaded\n \t\tmodule.l = true;\n\n \t\t// Return the exports of the module\n \t\treturn module.exports;\n \t}\n\n\n \t// expose the modules object (__webpack_modules__)\n \t__webpack_require__.m = modules;\n\n \t// expose the module cache\n \t__webpack_require__.c = installedModules;\n\n \t// identity function for calling harmony imports with the correct context\n \t__webpack_require__.i = function(value) { return value; };\n\n \t// define getter function for harmony exports\n \t__webpack_require__.d = function(exports, name, getter) {\n \t\tif(!__webpack_require__.o(exports, name)) {\n \t\t\tObject.defineProperty(exports, name, {\n \t\t\t\tconfigurable: false,\n \t\t\t\tenumerable: true,\n \t\t\t\tget: getter\n \t\t\t});\n \t\t}\n \t};\n\n \t// getDefaultExport function for compatibility with non-harmony modules\n \t__webpack_require__.n = function(module) {\n \t\tvar getter = module && module.__esModule ?\n \t\t\tfunction getDefault() { return module['default']; } :\n \t\t\tfunction getModuleExports() { return module; };\n \t\t__webpack_require__.d(getter, 'a', getter);\n \t\treturn getter;\n \t};\n\n \t// Object.prototype.hasOwnProperty.call\n \t__webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };\n\n \t// __webpack_public_path__\n \t__webpack_require__.p = \"\";\n\n \t// Load entry module and return exports\n \treturn __webpack_require__(__webpack_require__.s = 4);\n\n\n\n// WEBPACK FOOTER //\n// webpack/bootstrap f786037dce77e4f34c9a","(function(root, factory){\n\n\t//UMD\n\tif ( typeof define === \"function\" && define.amd ) {\n\t\tdefine(function() {\n\t\t\treturn factory();\n\t\t});\n\t} else if (typeof module === \"object\") {\n\t\tmodule.exports = factory();\n \t} else {\n\t\troot.Tone = factory();\n\t}\n\n}(this, function(){\n\n\t\"use strict\";\n\t\n\tvar Tone;\n\t//constructs the main Tone object\n\tfunction Main(func){\n\t\tTone = func();\n\t}\n\t//invokes each of the modules with the main Tone object as the argument\n\tfunction Module(func){\n\t\tfunc(Tone);\n\t}\t/**\n\t * Tone.js\n\t * @author Yotam Mann\n\t * @license http://opensource.org/licenses/MIT MIT License\n\t * @copyright 2014-2017 Yotam Mann\n\t */\n\tMain(function () {\n\t \n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tTONE\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * @class Tone is the base class of all other classes. It provides \n\t\t * a lot of methods and functionality to all classes that extend\n\t\t * it. \n\t\t * \n\t\t * @constructor\n\t\t * @alias Tone\n\t\t * @param {number} [inputs=1] the number of input nodes\n\t\t * @param {number} [outputs=1] the number of output nodes\n\t\t */\n\t var Tone = function (inputs, outputs) {\n\t /**\n\t\t\t * the input node(s)\n\t\t\t * @type {GainNode|Array}\n\t\t\t */\n\t if (this.isUndef(inputs) || inputs === 1) {\n\t this.input = this.context.createGain();\n\t } else if (inputs > 1) {\n\t this.input = new Array(inputs);\n\t }\n\t /**\n\t\t\t * the output node(s)\n\t\t\t * @type {GainNode|Array}\n\t\t\t */\n\t if (this.isUndef(outputs) || outputs === 1) {\n\t this.output = this.context.createGain();\n\t } else if (outputs > 1) {\n\t this.output = new Array(inputs);\n\t }\n\t };\n\t /**\n\t\t * Set the parameters at once. Either pass in an\n\t\t * object mapping parameters to values, or to set a\n\t\t * single parameter, by passing in a string and value.\n\t\t * The last argument is an optional ramp time which \n\t\t * will ramp any signal values to their destination value\n\t\t * over the duration of the rampTime.\n\t\t * @param {Object|string} params\n\t\t * @param {number=} value\n\t\t * @param {Time=} rampTime\n\t\t * @returns {Tone} this\n\t\t * @example\n\t\t * //set values using an object\n\t\t * filter.set({\n\t\t * \t\"frequency\" : 300,\n\t\t * \t\"type\" : highpass\n\t\t * });\n\t\t * @example\n\t\t * filter.set(\"type\", \"highpass\");\n\t\t * @example\n\t\t * //ramp to the value 220 over 3 seconds. \n\t\t * oscillator.set({\n\t\t * \t\"frequency\" : 220\n\t\t * }, 3);\n\t\t */\n\t Tone.prototype.set = function (params, value, rampTime) {\n\t if (this.isObject(params)) {\n\t rampTime = value;\n\t } else if (this.isString(params)) {\n\t var tmpObj = {};\n\t tmpObj[params] = value;\n\t params = tmpObj;\n\t }\n\t paramLoop:\n\t for (var attr in params) {\n\t value = params[attr];\n\t var parent = this;\n\t if (attr.indexOf('.') !== -1) {\n\t var attrSplit = attr.split('.');\n\t for (var i = 0; i < attrSplit.length - 1; i++) {\n\t parent = parent[attrSplit[i]];\n\t if (parent instanceof Tone) {\n\t attrSplit.splice(0, i + 1);\n\t var innerParam = attrSplit.join('.');\n\t parent.set(innerParam, value);\n\t continue paramLoop;\n\t }\n\t }\n\t attr = attrSplit[attrSplit.length - 1];\n\t }\n\t var param = parent[attr];\n\t if (this.isUndef(param)) {\n\t continue;\n\t }\n\t if (Tone.Signal && param instanceof Tone.Signal || Tone.Param && param instanceof Tone.Param) {\n\t if (param.value !== value) {\n\t if (this.isUndef(rampTime)) {\n\t param.value = value;\n\t } else {\n\t param.rampTo(value, rampTime);\n\t }\n\t }\n\t } else if (param instanceof AudioParam) {\n\t if (param.value !== value) {\n\t param.value = value;\n\t }\n\t } else if (param instanceof Tone) {\n\t param.set(value);\n\t } else if (param !== value) {\n\t parent[attr] = value;\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Get the object's attributes. Given no arguments get\n\t\t * will return all available object properties and their corresponding\n\t\t * values. Pass in a single attribute to retrieve or an array\n\t\t * of attributes. The attribute strings can also include a \".\"\n\t\t * to access deeper properties.\n\t\t * @example\n\t\t * osc.get();\n\t\t * //returns {\"type\" : \"sine\", \"frequency\" : 440, ...etc}\n\t\t * @example\n\t\t * osc.get(\"type\");\n\t\t * //returns { \"type\" : \"sine\"}\n\t\t * @example\n\t\t * //use dot notation to access deep properties\n\t\t * synth.get([\"envelope.attack\", \"envelope.release\"]);\n\t\t * //returns {\"envelope\" : {\"attack\" : 0.2, \"release\" : 0.4}}\n\t\t * @param {Array=|string|undefined} params the parameters to get, otherwise will return \n\t\t * \t\t\t\t\t all available.\n\t\t * @returns {Object}\n\t\t */\n\t Tone.prototype.get = function (params) {\n\t if (this.isUndef(params)) {\n\t params = this._collectDefaults(this.constructor);\n\t } else if (this.isString(params)) {\n\t params = [params];\n\t }\n\t var ret = {};\n\t for (var i = 0; i < params.length; i++) {\n\t var attr = params[i];\n\t var parent = this;\n\t var subRet = ret;\n\t if (attr.indexOf('.') !== -1) {\n\t var attrSplit = attr.split('.');\n\t for (var j = 0; j < attrSplit.length - 1; j++) {\n\t var subAttr = attrSplit[j];\n\t subRet[subAttr] = subRet[subAttr] || {};\n\t subRet = subRet[subAttr];\n\t parent = parent[subAttr];\n\t }\n\t attr = attrSplit[attrSplit.length - 1];\n\t }\n\t var param = parent[attr];\n\t if (this.isObject(params[attr])) {\n\t subRet[attr] = param.get();\n\t } else if (Tone.Signal && param instanceof Tone.Signal) {\n\t subRet[attr] = param.value;\n\t } else if (Tone.Param && param instanceof Tone.Param) {\n\t subRet[attr] = param.value;\n\t } else if (param instanceof AudioParam) {\n\t subRet[attr] = param.value;\n\t } else if (param instanceof Tone) {\n\t subRet[attr] = param.get();\n\t } else if (!this.isFunction(param) && !this.isUndef(param)) {\n\t subRet[attr] = param;\n\t }\n\t }\n\t return ret;\n\t };\n\t /**\n\t\t * collect all of the default attributes in one\n\t\t * @private\n\t\t * @param {function} constr the constructor to find the defaults from\n\t\t * @return {Array} all of the attributes which belong to the class\n\t\t */\n\t Tone.prototype._collectDefaults = function (constr) {\n\t var ret = [];\n\t if (!this.isUndef(constr.defaults)) {\n\t ret = Object.keys(constr.defaults);\n\t }\n\t if (!this.isUndef(constr._super)) {\n\t var superDefs = this._collectDefaults(constr._super);\n\t //filter out repeats\n\t for (var i = 0; i < superDefs.length; i++) {\n\t if (ret.indexOf(superDefs[i]) === -1) {\n\t ret.push(superDefs[i]);\n\t }\n\t }\n\t }\n\t return ret;\n\t };\n\t /**\n\t\t * @returns {string} returns the name of the class as a string\n\t\t */\n\t Tone.prototype.toString = function () {\n\t for (var className in Tone) {\n\t var isLetter = className[0].match(/^[A-Z]$/);\n\t var sameConstructor = Tone[className] === this.constructor;\n\t if (this.isFunction(Tone[className]) && isLetter && sameConstructor) {\n\t return className;\n\t }\n\t }\n\t return 'Tone';\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tCLASS VARS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * The number of inputs feeding into the AudioNode. \n\t\t * For source nodes, this will be 0.\n\t\t * @memberOf Tone#\n\t\t * @name numberOfInputs\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.prototype, 'numberOfInputs', {\n\t get: function () {\n\t if (this.input) {\n\t if (this.isArray(this.input)) {\n\t return this.input.length;\n\t } else {\n\t return 1;\n\t }\n\t } else {\n\t return 0;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The number of outputs coming out of the AudioNode. \n\t\t * For source nodes, this will be 0.\n\t\t * @memberOf Tone#\n\t\t * @name numberOfInputs\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.prototype, 'numberOfOutputs', {\n\t get: function () {\n\t if (this.output) {\n\t if (this.isArray(this.output)) {\n\t return this.output.length;\n\t } else {\n\t return 1;\n\t }\n\t } else {\n\t return 0;\n\t }\n\t }\n\t });\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tCONNECTIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * disconnect and dispose\n\t\t * @returns {Tone} this\n\t\t */\n\t Tone.prototype.dispose = function () {\n\t if (!this.isUndef(this.input)) {\n\t if (this.input instanceof AudioNode) {\n\t this.input.disconnect();\n\t }\n\t this.input = null;\n\t }\n\t if (!this.isUndef(this.output)) {\n\t if (this.output instanceof AudioNode) {\n\t this.output.disconnect();\n\t }\n\t this.output = null;\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * connect the output of a ToneNode to an AudioParam, AudioNode, or ToneNode\n\t\t * @param {Tone | AudioParam | AudioNode} unit \n\t\t * @param {number} [outputNum=0] optionally which output to connect from\n\t\t * @param {number} [inputNum=0] optionally which input to connect to\n\t\t * @returns {Tone} this\n\t\t */\n\t Tone.prototype.connect = function (unit, outputNum, inputNum) {\n\t if (Array.isArray(this.output)) {\n\t outputNum = this.defaultArg(outputNum, 0);\n\t this.output[outputNum].connect(unit, 0, inputNum);\n\t } else {\n\t this.output.connect(unit, outputNum, inputNum);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * disconnect the output\n\t\t * @param {Number|AudioNode} output Either the output index to disconnect\n\t\t * if the output is an array, or the\n\t\t * node to disconnect from.\n\t\t * @returns {Tone} this\n\t\t */\n\t Tone.prototype.disconnect = function (destination, outputNum, inputNum) {\n\t if (this.isArray(this.output)) {\n\t if (this.isNumber(destination)) {\n\t this.output[destination].disconnect();\n\t } else {\n\t outputNum = this.defaultArg(outputNum, 0);\n\t this.output[outputNum].disconnect(destination, 0, inputNum);\n\t }\n\t } else {\n\t this.output.disconnect.apply(this.output, arguments);\n\t }\n\t };\n\t /**\n\t\t * connect together all of the arguments in series\n\t\t * @param {...AudioParam|Tone|AudioNode} nodes\n\t\t * @returns {Tone} this\n\t\t */\n\t Tone.prototype.connectSeries = function () {\n\t if (arguments.length > 1) {\n\t var currentUnit = arguments[0];\n\t for (var i = 1; i < arguments.length; i++) {\n\t var toUnit = arguments[i];\n\t currentUnit.connect(toUnit);\n\t currentUnit = toUnit;\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Connect the output of this node to the rest of the nodes in series.\n\t\t * @example\n\t\t * //connect a node to an effect, panVol and then to the master output\n\t\t * node.chain(effect, panVol, Tone.Master);\n\t\t * @param {...AudioParam|Tone|AudioNode} nodes\n\t\t * @returns {Tone} this\n\t\t */\n\t Tone.prototype.chain = function () {\n\t if (arguments.length > 0) {\n\t var currentUnit = this;\n\t for (var i = 0; i < arguments.length; i++) {\n\t var toUnit = arguments[i];\n\t currentUnit.connect(toUnit);\n\t currentUnit = toUnit;\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * connect the output of this node to the rest of the nodes in parallel.\n\t\t * @param {...AudioParam|Tone|AudioNode} nodes\n\t\t * @returns {Tone} this\n\t\t */\n\t Tone.prototype.fan = function () {\n\t if (arguments.length > 0) {\n\t for (var i = 0; i < arguments.length; i++) {\n\t this.connect(arguments[i]);\n\t }\n\t }\n\t return this;\n\t };\n\t //give native nodes chain and fan methods\n\t AudioNode.prototype.chain = Tone.prototype.chain;\n\t AudioNode.prototype.fan = Tone.prototype.fan;\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tUTILITIES / HELPERS / MATHS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * If the `given` parameter is undefined, use the `fallback`. \n\t\t * If both `given` and `fallback` are object literals, it will\n\t\t * return a deep copy which includes all of the parameters from both \n\t\t * objects. If a parameter is undefined in given, it will return\n\t\t * the fallback property. \n\t\t *
\n\t\t * WARNING: if object is self referential, it will go into an an \n\t\t * infinite recursive loop.\n\t\t * \n\t\t * @param {*} given \n\t\t * @param {*} fallback \n\t\t * @return {*} \n\t\t */\n\t Tone.prototype.defaultArg = function (given, fallback) {\n\t if (this.isObject(given) && this.isObject(fallback)) {\n\t var ret = {};\n\t //make a deep copy of the given object\n\t for (var givenProp in given) {\n\t ret[givenProp] = this.defaultArg(fallback[givenProp], given[givenProp]);\n\t }\n\t for (var fallbackProp in fallback) {\n\t ret[fallbackProp] = this.defaultArg(given[fallbackProp], fallback[fallbackProp]);\n\t }\n\t return ret;\n\t } else {\n\t return this.isUndef(given) ? fallback : given;\n\t }\n\t };\n\t /**\n\t\t * returns the args as an options object with given arguments\n\t\t * mapped to the names provided. \n\t\t *\n\t\t * if the args given is an array containing only one object, it is assumed\n\t\t * that that's already the options object and will just return it. \n\t\t * \n\t\t * @param {Array} values the 'arguments' object of the function\n\t\t * @param {Array} keys the names of the arguments as they\n\t\t * should appear in the options object\n\t\t * @param {Object=} defaults optional defaults to mixin to the returned \n\t\t * options object \n\t\t * @return {Object} the options object with the names mapped to the arguments\n\t\t */\n\t Tone.prototype.optionsObject = function (values, keys, defaults) {\n\t var options = {};\n\t if (values.length === 1 && this.isObject(values[0])) {\n\t options = values[0];\n\t } else {\n\t for (var i = 0; i < keys.length; i++) {\n\t options[keys[i]] = values[i];\n\t }\n\t }\n\t if (!this.isUndef(defaults)) {\n\t return this.defaultArg(options, defaults);\n\t } else {\n\t return options;\n\t }\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t // TYPE CHECKING\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * test if the arg is undefined\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is undefined\n\t\t * @function\n\t\t */\n\t Tone.prototype.isUndef = function (val) {\n\t return typeof val === 'undefined';\n\t };\n\t /**\n\t\t * test if the arg is a function\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is a function\n\t\t * @function\n\t\t */\n\t Tone.prototype.isFunction = function (val) {\n\t return typeof val === 'function';\n\t };\n\t /**\n\t\t * Test if the argument is a number.\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is a number\n\t\t */\n\t Tone.prototype.isNumber = function (arg) {\n\t return typeof arg === 'number';\n\t };\n\t /**\n\t\t * Test if the given argument is an object literal (i.e. `{}`);\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is an object literal.\n\t\t */\n\t Tone.prototype.isObject = function (arg) {\n\t return Object.prototype.toString.call(arg) === '[object Object]' && arg.constructor === Object;\n\t };\n\t /**\n\t\t * Test if the argument is a boolean.\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is a boolean\n\t\t */\n\t Tone.prototype.isBoolean = function (arg) {\n\t return typeof arg === 'boolean';\n\t };\n\t /**\n\t\t * Test if the argument is an Array\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is an array\n\t\t */\n\t Tone.prototype.isArray = function (arg) {\n\t return Array.isArray(arg);\n\t };\n\t /**\n\t\t * Test if the argument is a string.\n\t\t * @param {*} arg the argument to test\n\t\t * @returns {boolean} true if the arg is a string\n\t\t */\n\t Tone.prototype.isString = function (arg) {\n\t return typeof arg === 'string';\n\t };\n\t /**\n\t\t * An empty function.\n\t\t * @static\n\t\t */\n\t Tone.noOp = function () {\n\t };\n\t /**\n\t\t * Make the property not writable. Internal use only. \n\t\t * @private\n\t\t * @param {string} property the property to make not writable\n\t\t */\n\t Tone.prototype._readOnly = function (property) {\n\t if (Array.isArray(property)) {\n\t for (var i = 0; i < property.length; i++) {\n\t this._readOnly(property[i]);\n\t }\n\t } else {\n\t Object.defineProperty(this, property, {\n\t writable: false,\n\t enumerable: true\n\t });\n\t }\n\t };\n\t /**\n\t\t * Make an attribute writeable. Interal use only. \n\t\t * @private\n\t\t * @param {string} property the property to make writable\n\t\t */\n\t Tone.prototype._writable = function (property) {\n\t if (Array.isArray(property)) {\n\t for (var i = 0; i < property.length; i++) {\n\t this._writable(property[i]);\n\t }\n\t } else {\n\t Object.defineProperty(this, property, { writable: true });\n\t }\n\t };\n\t /**\n\t\t * Possible play states. \n\t\t * @enum {string}\n\t\t */\n\t Tone.State = {\n\t Started: 'started',\n\t Stopped: 'stopped',\n\t Paused: 'paused'\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t // CONVERSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Equal power gain scale. Good for cross-fading.\n\t\t * @param {NormalRange} percent (0-1)\n\t\t * @return {Number} output gain (0-1)\n\t\t */\n\t Tone.prototype.equalPowerScale = function (percent) {\n\t var piFactor = 0.5 * Math.PI;\n\t return Math.sin(percent * piFactor);\n\t };\n\t /**\n\t\t * Convert decibels into gain.\n\t\t * @param {Decibels} db\n\t\t * @return {Number} \n\t\t */\n\t Tone.prototype.dbToGain = function (db) {\n\t return Math.pow(2, db / 6);\n\t };\n\t /**\n\t\t * Convert gain to decibels.\n\t\t * @param {Number} gain (0-1)\n\t\t * @return {Decibels} \n\t\t */\n\t Tone.prototype.gainToDb = function (gain) {\n\t return 20 * (Math.log(gain) / Math.LN10);\n\t };\n\t /**\n\t\t * Convert an interval (in semitones) to a frequency ratio.\n\t\t * @param {Interval} interval the number of semitones above the base note\n\t\t * @return {number} the frequency ratio\n\t\t * @example\n\t\t * tone.intervalToFrequencyRatio(0); // 1\n\t\t * tone.intervalToFrequencyRatio(12); // 2\n\t\t * tone.intervalToFrequencyRatio(-12); // 0.5\n\t\t */\n\t Tone.prototype.intervalToFrequencyRatio = function (interval) {\n\t return Math.pow(2, interval / 12);\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tTIMING\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Return the current time of the AudioContext clock.\n\t\t * @return {Number} the currentTime from the AudioContext\n\t\t */\n\t Tone.prototype.now = function () {\n\t return Tone.context.now();\n\t };\n\t /**\n\t\t * Return the current time of the AudioContext clock.\n\t\t * @return {Number} the currentTime from the AudioContext\n\t\t * @static\n\t\t */\n\t Tone.now = function () {\n\t return Tone.context.now();\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tINHERITANCE\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * have a child inherit all of Tone's (or a parent's) prototype\n\t\t * to inherit the parent's properties, make sure to call \n\t\t * Parent.call(this) in the child's constructor\n\t\t *\n\t\t * based on closure library's inherit function\n\t\t *\n\t\t * @static\n\t\t * @param {function} \tchild \n\t\t * @param {function=} parent (optional) parent to inherit from\n\t\t * if no parent is supplied, the child\n\t\t * will inherit from Tone\n\t\t */\n\t Tone.extend = function (child, parent) {\n\t if (Tone.prototype.isUndef(parent)) {\n\t parent = Tone;\n\t }\n\t function TempConstructor() {\n\t }\n\t TempConstructor.prototype = parent.prototype;\n\t child.prototype = new TempConstructor();\n\t /** @override */\n\t child.prototype.constructor = child;\n\t child._super = parent;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tCONTEXT\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * The private audio context shared by all Tone Nodes. \n\t\t * @private\n\t\t * @type {Tone.Context|undefined}\n\t\t */\n\t var audioContext;\n\t /**\n\t\t * A static pointer to the audio context accessible as Tone.context. \n\t\t * @type {Tone.Context}\n\t\t * @name context\n\t\t * @memberOf Tone\n\t\t */\n\t Object.defineProperty(Tone, 'context', {\n\t get: function () {\n\t return audioContext;\n\t },\n\t set: function (context) {\n\t if (Tone.Context && context instanceof Tone.Context) {\n\t audioContext = context;\n\t } else {\n\t audioContext = new Tone.Context(context);\n\t }\n\t //initialize the new audio context\n\t if (Tone.Context) {\n\t Tone.Context.emit('init', audioContext);\n\t }\n\t }\n\t });\n\t /**\n\t\t * The AudioContext\n\t\t * @type {Tone.Context}\n\t\t * @name context\n\t\t * @memberOf Tone#\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.prototype, 'context', {\n\t get: function () {\n\t return Tone.context;\n\t }\n\t });\n\t /**\n\t\t * Tone automatically creates a context on init, but if you are working\n\t\t * with other libraries which also create an AudioContext, it can be\n\t\t * useful to set your own. If you are going to set your own context, \n\t\t * be sure to do it at the start of your code, before creating any objects.\n\t\t * @static\n\t\t * @param {AudioContext} ctx The new audio context to set\n\t\t */\n\t Tone.setContext = function (ctx) {\n\t Tone.context = ctx;\n\t };\n\t /**\n\t\t * The number of seconds of 1 processing block (128 samples)\n\t\t * @type {Number}\n\t\t * @name blockTime\n\t\t * @memberOf Tone#\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.prototype, 'blockTime', {\n\t get: function () {\n\t return 128 / this.context.sampleRate;\n\t }\n\t });\n\t /**\n\t\t * The duration in seconds of one sample.\n\t\t * @type {Number}\n\t\t * @name sampleTime\n\t\t * @memberOf Tone#\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.prototype, 'sampleTime', {\n\t get: function () {\n\t return 1 / this.context.sampleRate;\n\t }\n\t });\n\t /**\n\t\t * Whether or not all the technologies that Tone.js relies on are supported by the current browser. \n\t\t * @type {Boolean}\n\t\t * @name supported\n\t\t * @memberOf Tone\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone, 'supported', {\n\t get: function () {\n\t var hasAudioContext = window.hasOwnProperty('AudioContext') || window.hasOwnProperty('webkitAudioContext');\n\t var hasPromises = window.hasOwnProperty('Promise');\n\t var hasWorkers = window.hasOwnProperty('Worker');\n\t return hasAudioContext && hasPromises && hasWorkers;\n\t }\n\t });\n\t Tone.version = 'r10';\n\t // allow optional silencing of this log\n\t if (!window.TONE_SILENCE_VERSION_LOGGING) {\n\t console.log('%c * Tone.js ' + Tone.version + ' * ', 'background: #000; color: #fff');\n\t }\n\t return Tone;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Base class for all Signals. Used Internally. \n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t */\n\t Tone.SignalBase = function () {\n\t };\n\t Tone.extend(Tone.SignalBase);\n\t /**\n\t\t * When signals connect to other signals or AudioParams, \n\t\t * they take over the output value of that signal or AudioParam. \n\t\t * For all other nodes, the behavior is the same as a default connect. \n\t\t *\n\t\t * @override\n\t\t * @param {AudioParam|AudioNode|Tone.Signal|Tone} node \n\t\t * @param {number} [outputNumber=0] The output number to connect from.\n\t\t * @param {number} [inputNumber=0] The input number to connect to.\n\t\t * @returns {Tone.SignalBase} this\n\t\t */\n\t Tone.SignalBase.prototype.connect = function (node, outputNumber, inputNumber) {\n\t //zero it out so that the signal can have full control\n\t if (Tone.Signal && Tone.Signal === node.constructor || Tone.Param && Tone.Param === node.constructor || Tone.TimelineSignal && Tone.TimelineSignal === node.constructor) {\n\t //cancel changes\n\t node._param.cancelScheduledValues(0);\n\t //reset the value\n\t node._param.value = 0;\n\t //mark the value as overridden\n\t node.overridden = true;\n\t } else if (node instanceof AudioParam) {\n\t node.cancelScheduledValues(0);\n\t node.value = 0;\n\t }\n\t Tone.prototype.connect.call(this, node, outputNumber, inputNumber);\n\t return this;\n\t };\n\t return Tone.SignalBase;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Wraps the native Web Audio API \n\t\t * [WaveShaperNode](http://webaudio.github.io/web-audio-api/#the-waveshapernode-interface).\n\t\t *\n\t\t * @extends {Tone.SignalBase}\n\t\t * @constructor\n\t\t * @param {function|Array|Number} mapping The function used to define the values. \n\t\t * The mapping function should take two arguments: \n\t\t * the first is the value at the current position \n\t\t * and the second is the array position. \n\t\t * If the argument is an array, that array will be\n\t\t * set as the wave shaping function. The input\n\t\t * signal is an AudioRange [-1, 1] value and the output\n\t\t * signal can take on any numerical values. \n\t\t * \n\t\t * @param {Number} [bufferLen=1024] The length of the WaveShaperNode buffer.\n\t\t * @example\n\t\t * var timesTwo = new Tone.WaveShaper(function(val){\n\t\t * \treturn val * 2;\n\t\t * }, 2048);\n\t\t * @example\n\t\t * //a waveshaper can also be constructed with an array of values\n\t\t * var invert = new Tone.WaveShaper([1, -1]);\n\t\t */\n\t Tone.WaveShaper = function (mapping, bufferLen) {\n\t /**\n\t\t\t * the waveshaper\n\t\t\t * @type {WaveShaperNode}\n\t\t\t * @private\n\t\t\t */\n\t this._shaper = this.input = this.output = this.context.createWaveShaper();\n\t /**\n\t\t\t * the waveshapers curve\n\t\t\t * @type {Float32Array}\n\t\t\t * @private\n\t\t\t */\n\t this._curve = null;\n\t if (Array.isArray(mapping)) {\n\t this.curve = mapping;\n\t } else if (isFinite(mapping) || this.isUndef(mapping)) {\n\t this._curve = new Float32Array(this.defaultArg(mapping, 1024));\n\t } else if (this.isFunction(mapping)) {\n\t this._curve = new Float32Array(this.defaultArg(bufferLen, 1024));\n\t this.setMap(mapping);\n\t }\n\t };\n\t Tone.extend(Tone.WaveShaper, Tone.SignalBase);\n\t /**\n\t\t * Uses a mapping function to set the value of the curve. \n\t\t * @param {function} mapping The function used to define the values. \n\t\t * The mapping function take two arguments: \n\t\t * the first is the value at the current position \n\t\t * which goes from -1 to 1 over the number of elements\n\t\t * in the curve array. The second argument is the array position. \n\t\t * @returns {Tone.WaveShaper} this\n\t\t * @example\n\t\t * //map the input signal from [-1, 1] to [0, 10]\n\t\t * shaper.setMap(function(val, index){\n\t\t * \treturn (val + 1) * 5;\n\t\t * })\n\t\t */\n\t Tone.WaveShaper.prototype.setMap = function (mapping) {\n\t for (var i = 0, len = this._curve.length; i < len; i++) {\n\t var normalized = i / (len - 1) * 2 - 1;\n\t this._curve[i] = mapping(normalized, i);\n\t }\n\t this._shaper.curve = this._curve;\n\t return this;\n\t };\n\t /**\n\t\t * The array to set as the waveshaper curve. For linear curves\n\t\t * array length does not make much difference, but for complex curves\n\t\t * longer arrays will provide smoother interpolation. \n\t\t * @memberOf Tone.WaveShaper#\n\t\t * @type {Array}\n\t\t * @name curve\n\t\t */\n\t Object.defineProperty(Tone.WaveShaper.prototype, 'curve', {\n\t get: function () {\n\t return this._shaper.curve;\n\t },\n\t set: function (mapping) {\n\t this._curve = new Float32Array(mapping);\n\t this._shaper.curve = this._curve;\n\t }\n\t });\n\t /**\n\t\t * Specifies what type of oversampling (if any) should be used when \n\t\t * applying the shaping curve. Can either be \"none\", \"2x\" or \"4x\". \n\t\t * @memberOf Tone.WaveShaper#\n\t\t * @type {string}\n\t\t * @name oversample\n\t\t */\n\t Object.defineProperty(Tone.WaveShaper.prototype, 'oversample', {\n\t get: function () {\n\t return this._shaper.oversample;\n\t },\n\t set: function (oversampling) {\n\t if ([\n\t 'none',\n\t '2x',\n\t '4x'\n\t ].indexOf(oversampling) !== -1) {\n\t this._shaper.oversample = oversampling;\n\t } else {\n\t throw new RangeError('Tone.WaveShaper: oversampling must be either \\'none\\', \\'2x\\', or \\'4x\\'');\n\t }\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.WaveShaper} this\n\t\t */\n\t Tone.WaveShaper.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._shaper.disconnect();\n\t this._shaper = null;\n\t this._curve = null;\n\t return this;\n\t };\n\t return Tone.WaveShaper;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Tone.TimeBase is a flexible encoding of time\n\t\t * which can be evaluated to and from a string.\n\t\t * Parsing code modified from https://code.google.com/p/tapdigit/\n\t\t * Copyright 2011 2012 Ariya Hidayat, New BSD License\n\t\t * @extends {Tone}\n\t\t * @param {Time} val The time value as a number or string\n\t\t * @param {String=} units Unit values\n\t\t * @example\n\t\t * Tone.TimeBase(4, \"n\")\n\t\t * Tone.TimeBase(2, \"t\")\n\t\t * Tone.TimeBase(\"2t\").add(\"1m\")\n\t\t * Tone.TimeBase(\"2t + 1m\");\n\t\t */\n\t Tone.TimeBase = function (val, units) {\n\t //allows it to be constructed with or without 'new'\n\t if (this instanceof Tone.TimeBase) {\n\t /**\n\t\t\t\t * Any expressions parsed from the Time\n\t\t\t\t * @type {Array}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._expr = this._noOp;\n\t if (val instanceof Tone.TimeBase) {\n\t this.copy(val);\n\t } else if (!this.isUndef(units) || this.isNumber(val)) {\n\t //default units\n\t units = this.defaultArg(units, this._defaultUnits);\n\t var method = this._primaryExpressions[units].method;\n\t this._expr = method.bind(this, val);\n\t } else if (this.isString(val)) {\n\t this.set(val);\n\t } else if (this.isUndef(val)) {\n\t //default expression\n\t this._expr = this._defaultExpr();\n\t }\n\t } else {\n\t return new Tone.TimeBase(val, units);\n\t }\n\t };\n\t Tone.extend(Tone.TimeBase);\n\t /**\n\t\t * Repalce the current time value with the value\n\t\t * given by the expression string.\n\t\t * @param {String} exprString\n\t\t * @return {Tone.TimeBase} this\n\t\t */\n\t Tone.TimeBase.prototype.set = function (exprString) {\n\t this._expr = this._parseExprString(exprString);\n\t return this;\n\t };\n\t /**\n\t\t * Return a clone of the TimeBase object.\n\t\t * @return {Tone.TimeBase} The new cloned Tone.TimeBase\n\t\t */\n\t Tone.TimeBase.prototype.clone = function () {\n\t var instance = new this.constructor();\n\t instance.copy(this);\n\t return instance;\n\t };\n\t /**\n\t\t * Copies the value of time to this Time\n\t\t * @param {Tone.TimeBase} time\n\t\t * @return {TimeBase}\n\t\t */\n\t Tone.TimeBase.prototype.copy = function (time) {\n\t var val = time._expr();\n\t return this.set(val);\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tABSTRACT SYNTAX TREE PARSER\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * All the primary expressions.\n\t\t * @private\n\t\t * @type {Object}\n\t\t */\n\t Tone.TimeBase.prototype._primaryExpressions = {\n\t 'n': {\n\t regexp: /^(\\d+)n/i,\n\t method: function (value) {\n\t value = parseInt(value);\n\t if (value === 1) {\n\t return this._beatsToUnits(this._timeSignature());\n\t } else {\n\t return this._beatsToUnits(4 / value);\n\t }\n\t }\n\t },\n\t 't': {\n\t regexp: /^(\\d+)t/i,\n\t method: function (value) {\n\t value = parseInt(value);\n\t return this._beatsToUnits(8 / (parseInt(value) * 3));\n\t }\n\t },\n\t 'm': {\n\t regexp: /^(\\d+)m/i,\n\t method: function (value) {\n\t return this._beatsToUnits(parseInt(value) * this._timeSignature());\n\t }\n\t },\n\t 'i': {\n\t regexp: /^(\\d+)i/i,\n\t method: function (value) {\n\t return this._ticksToUnits(parseInt(value));\n\t }\n\t },\n\t 'hz': {\n\t regexp: /^(\\d+(?:\\.\\d+)?)hz/i,\n\t method: function (value) {\n\t return this._frequencyToUnits(parseFloat(value));\n\t }\n\t },\n\t 'tr': {\n\t regexp: /^(\\d+(?:\\.\\d+)?):(\\d+(?:\\.\\d+)?):?(\\d+(?:\\.\\d+)?)?/,\n\t method: function (m, q, s) {\n\t var total = 0;\n\t if (m && m !== '0') {\n\t total += this._beatsToUnits(this._timeSignature() * parseFloat(m));\n\t }\n\t if (q && q !== '0') {\n\t total += this._beatsToUnits(parseFloat(q));\n\t }\n\t if (s && s !== '0') {\n\t total += this._beatsToUnits(parseFloat(s) / 4);\n\t }\n\t return total;\n\t }\n\t },\n\t 's': {\n\t regexp: /^(\\d+(?:\\.\\d+)?s)/,\n\t method: function (value) {\n\t return this._secondsToUnits(parseFloat(value));\n\t }\n\t },\n\t 'samples': {\n\t regexp: /^(\\d+)samples/,\n\t method: function (value) {\n\t return parseInt(value) / this.context.sampleRate;\n\t }\n\t },\n\t 'default': {\n\t regexp: /^(\\d+(?:\\.\\d+)?)/,\n\t method: function (value) {\n\t return this._primaryExpressions[this._defaultUnits].method.call(this, value);\n\t }\n\t }\n\t };\n\t /**\n\t\t * All the binary expressions that TimeBase can accept.\n\t\t * @private\n\t\t * @type {Object}\n\t\t */\n\t Tone.TimeBase.prototype._binaryExpressions = {\n\t '+': {\n\t regexp: /^\\+/,\n\t precedence: 2,\n\t method: function (lh, rh) {\n\t return lh() + rh();\n\t }\n\t },\n\t '-': {\n\t regexp: /^\\-/,\n\t precedence: 2,\n\t method: function (lh, rh) {\n\t return lh() - rh();\n\t }\n\t },\n\t '*': {\n\t regexp: /^\\*/,\n\t precedence: 1,\n\t method: function (lh, rh) {\n\t return lh() * rh();\n\t }\n\t },\n\t '/': {\n\t regexp: /^\\//,\n\t precedence: 1,\n\t method: function (lh, rh) {\n\t return lh() / rh();\n\t }\n\t }\n\t };\n\t /**\n\t\t * All the unary expressions.\n\t\t * @private\n\t\t * @type {Object}\n\t\t */\n\t Tone.TimeBase.prototype._unaryExpressions = {\n\t 'neg': {\n\t regexp: /^\\-/,\n\t method: function (lh) {\n\t return -lh();\n\t }\n\t }\n\t };\n\t /**\n\t\t * Syntactic glue which holds expressions together\n\t\t * @private\n\t\t * @type {Object}\n\t\t */\n\t Tone.TimeBase.prototype._syntaxGlue = {\n\t '(': { regexp: /^\\(/ },\n\t ')': { regexp: /^\\)/ }\n\t };\n\t /**\n\t\t * tokenize the expression based on the Expressions object\n\t\t * @param {string} expr \n\t\t * @return {Object} returns two methods on the tokenized list, next and peek\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._tokenize = function (expr) {\n\t var position = -1;\n\t var tokens = [];\n\t while (expr.length > 0) {\n\t expr = expr.trim();\n\t var token = getNextToken(expr, this);\n\t tokens.push(token);\n\t expr = expr.substr(token.value.length);\n\t }\n\t function getNextToken(expr, context) {\n\t var expressions = [\n\t '_binaryExpressions',\n\t '_unaryExpressions',\n\t '_primaryExpressions',\n\t '_syntaxGlue'\n\t ];\n\t for (var i = 0; i < expressions.length; i++) {\n\t var group = context[expressions[i]];\n\t for (var opName in group) {\n\t var op = group[opName];\n\t var reg = op.regexp;\n\t var match = expr.match(reg);\n\t if (match !== null) {\n\t return {\n\t method: op.method,\n\t precedence: op.precedence,\n\t regexp: op.regexp,\n\t value: match[0]\n\t };\n\t }\n\t }\n\t }\n\t throw new SyntaxError('Tone.TimeBase: Unexpected token ' + expr);\n\t }\n\t return {\n\t next: function () {\n\t return tokens[++position];\n\t },\n\t peek: function () {\n\t return tokens[position + 1];\n\t }\n\t };\n\t };\n\t /**\n\t\t * Given a token, find the value within the groupName\n\t\t * @param {Object} token\n\t\t * @param {String} groupName\n\t\t * @param {Number} precedence\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._matchGroup = function (token, group, prec) {\n\t var ret = false;\n\t if (!this.isUndef(token)) {\n\t for (var opName in group) {\n\t var op = group[opName];\n\t if (op.regexp.test(token.value)) {\n\t if (!this.isUndef(prec)) {\n\t if (op.precedence === prec) {\n\t return op;\n\t }\n\t } else {\n\t return op;\n\t }\n\t }\n\t }\n\t }\n\t return ret;\n\t };\n\t /**\n\t\t * Match a binary expression given the token and the precedence\n\t\t * @param {Lexer} lexer\n\t\t * @param {Number} precedence\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._parseBinary = function (lexer, precedence) {\n\t if (this.isUndef(precedence)) {\n\t precedence = 2;\n\t }\n\t var expr;\n\t if (precedence < 0) {\n\t expr = this._parseUnary(lexer);\n\t } else {\n\t expr = this._parseBinary(lexer, precedence - 1);\n\t }\n\t var token = lexer.peek();\n\t while (token && this._matchGroup(token, this._binaryExpressions, precedence)) {\n\t token = lexer.next();\n\t expr = token.method.bind(this, expr, this._parseBinary(lexer, precedence - 1));\n\t token = lexer.peek();\n\t }\n\t return expr;\n\t };\n\t /**\n\t\t * Match a unary expression.\n\t\t * @param {Lexer} lexer\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._parseUnary = function (lexer) {\n\t var token, expr;\n\t token = lexer.peek();\n\t var op = this._matchGroup(token, this._unaryExpressions);\n\t if (op) {\n\t token = lexer.next();\n\t expr = this._parseUnary(lexer);\n\t return op.method.bind(this, expr);\n\t }\n\t return this._parsePrimary(lexer);\n\t };\n\t /**\n\t\t * Match a primary expression (a value).\n\t\t * @param {Lexer} lexer\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._parsePrimary = function (lexer) {\n\t var token, expr;\n\t token = lexer.peek();\n\t if (this.isUndef(token)) {\n\t throw new SyntaxError('Tone.TimeBase: Unexpected end of expression');\n\t }\n\t if (this._matchGroup(token, this._primaryExpressions)) {\n\t token = lexer.next();\n\t var matching = token.value.match(token.regexp);\n\t return token.method.bind(this, matching[1], matching[2], matching[3]);\n\t }\n\t if (token && token.value === '(') {\n\t lexer.next();\n\t expr = this._parseBinary(lexer);\n\t token = lexer.next();\n\t if (!(token && token.value === ')')) {\n\t throw new SyntaxError('Expected )');\n\t }\n\t return expr;\n\t }\n\t throw new SyntaxError('Tone.TimeBase: Cannot process token ' + token.value);\n\t };\n\t /**\n\t\t * Recursively parse the string expression into a syntax tree.\n\t\t * @param {string} expr \n\t\t * @return {Function} the bound method to be evaluated later\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._parseExprString = function (exprString) {\n\t if (!this.isString(exprString)) {\n\t exprString = exprString.toString();\n\t }\n\t var lexer = this._tokenize(exprString);\n\t var tree = this._parseBinary(lexer);\n\t return tree;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tDEFAULTS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * The initial expression value\n\t\t * @return {Number} The initial value 0\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._noOp = function () {\n\t return 0;\n\t };\n\t /**\n\t\t * The default expression value if no arguments are given\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._defaultExpr = function () {\n\t return this._noOp;\n\t };\n\t /**\n\t\t * The default units if none are given.\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._defaultUnits = 's';\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tUNIT CONVERSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Returns the value of a frequency in the current units\n\t\t * @param {Frequency} freq\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._frequencyToUnits = function (freq) {\n\t return 1 / freq;\n\t };\n\t /**\n\t\t * Return the value of the beats in the current units\n\t\t * @param {Number} beats\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._beatsToUnits = function (beats) {\n\t return 60 / Tone.Transport.bpm.value * beats;\n\t };\n\t /**\n\t\t * Returns the value of a second in the current units\n\t\t * @param {Seconds} seconds\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._secondsToUnits = function (seconds) {\n\t return seconds;\n\t };\n\t /**\n\t\t * Returns the value of a tick in the current time units\n\t\t * @param {Ticks} ticks\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._ticksToUnits = function (ticks) {\n\t return ticks * (this._beatsToUnits(1) / Tone.Transport.PPQ);\n\t };\n\t /**\n\t\t * Return the time signature.\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._timeSignature = function () {\n\t return Tone.Transport.timeSignature;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tEXPRESSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Push an expression onto the expression list\n\t\t * @param {Time} val\n\t\t * @param {String} type\n\t\t * @param {String} units\n\t\t * @return {Tone.TimeBase} \n\t\t * @private\n\t\t */\n\t Tone.TimeBase.prototype._pushExpr = function (val, name, units) {\n\t //create the expression\n\t if (!(val instanceof Tone.TimeBase)) {\n\t val = new this.constructor(val, units);\n\t }\n\t this._expr = this._binaryExpressions[name].method.bind(this, this._expr, val._expr);\n\t return this;\n\t };\n\t /**\n\t\t * Add to the current value.\n\t\t * @param {Time} val The value to add\n\t\t * @param {String=} units Optional units to use with the value.\n\t\t * @return {Tone.TimeBase} this\n\t\t * @example\n\t\t * Tone.TimeBase(\"2m\").add(\"1m\"); //\"3m\"\n\t\t */\n\t Tone.TimeBase.prototype.add = function (val, units) {\n\t return this._pushExpr(val, '+', units);\n\t };\n\t /**\n\t\t * Subtract the value from the current time.\n\t\t * @param {Time} val The value to subtract\n\t\t * @param {String=} units Optional units to use with the value.\n\t\t * @return {Tone.TimeBase} this\n\t\t * @example\n\t\t * Tone.TimeBase(\"2m\").sub(\"1m\"); //\"1m\"\n\t\t */\n\t Tone.TimeBase.prototype.sub = function (val, units) {\n\t return this._pushExpr(val, '-', units);\n\t };\n\t /**\n\t\t * Multiply the current value by the given time.\n\t\t * @param {Time} val The value to multiply\n\t\t * @param {String=} units Optional units to use with the value.\n\t\t * @return {Tone.TimeBase} this\n\t\t * @example\n\t\t * Tone.TimeBase(\"2m\").mult(\"2\"); //\"4m\"\n\t\t */\n\t Tone.TimeBase.prototype.mult = function (val, units) {\n\t return this._pushExpr(val, '*', units);\n\t };\n\t /**\n\t\t * Divide the current value by the given time.\n\t\t * @param {Time} val The value to divide by\n\t\t * @param {String=} units Optional units to use with the value.\n\t\t * @return {Tone.TimeBase} this\n\t\t * @example\n\t\t * Tone.TimeBase(\"2m\").div(2); //\"1m\"\n\t\t */\n\t Tone.TimeBase.prototype.div = function (val, units) {\n\t return this._pushExpr(val, '/', units);\n\t };\n\t /**\n\t\t * Evaluate the time value. Returns the time\n\t\t * in seconds.\n\t\t * @return {Seconds} \n\t\t */\n\t Tone.TimeBase.prototype.valueOf = function () {\n\t return this._expr();\n\t };\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.TimeBase} this\n\t\t */\n\t Tone.TimeBase.prototype.dispose = function () {\n\t this._expr = null;\n\t };\n\t return Tone.TimeBase;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Tone.Time is a primitive type for encoding Time values. \n\t\t * Eventually all time values are evaluated to seconds\n\t\t * using the `eval` method. Tone.Time can be constructed\n\t\t * with or without the `new` keyword. Tone.Time can be passed\n\t\t * into the parameter of any method which takes time as an argument. \n\t\t * @constructor\n\t\t * @extends {Tone.TimeBase}\n\t\t * @param {String|Number} val The time value.\n\t\t * @param {String=} units The units of the value.\n\t\t * @example\n\t\t * var t = Tone.Time(\"4n\");//encodes a quarter note\n\t\t * t.mult(4); // multiply that value by 4\n\t\t * t.toNotation(); //returns \"1m\"\n\t\t */\n\t Tone.Time = function (val, units) {\n\t if (this instanceof Tone.Time) {\n\t /**\n\t\t\t\t * If the current clock time should\n\t\t\t\t * be added to the output\n\t\t\t\t * @type {Boolean}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._plusNow = false;\n\t Tone.TimeBase.call(this, val, units);\n\t } else {\n\t return new Tone.Time(val, units);\n\t }\n\t };\n\t Tone.extend(Tone.Time, Tone.TimeBase);\n\t //clone the expressions so that \n\t //we can add more without modifying the original\n\t Tone.Time.prototype._unaryExpressions = Object.create(Tone.TimeBase.prototype._unaryExpressions);\n\t /*\n\t\t * Adds an additional unary expression\n\t\t * which quantizes values to the next subdivision\n\t\t * @type {Object}\n\t\t * @private\n\t\t */\n\t Tone.Time.prototype._unaryExpressions.quantize = {\n\t regexp: /^@/,\n\t method: function (rh) {\n\t return Tone.Transport.nextSubdivision(rh());\n\t }\n\t };\n\t /*\n\t\t * Adds an additional unary expression\n\t\t * which adds the current clock time.\n\t\t * @type {Object}\n\t\t * @private\n\t\t */\n\t Tone.Time.prototype._unaryExpressions.now = {\n\t regexp: /^\\+/,\n\t method: function (lh) {\n\t this._plusNow = true;\n\t return lh();\n\t }\n\t };\n\t /**\n\t\t * Quantize the time by the given subdivision. Optionally add a\n\t\t * percentage which will move the time value towards the ideal\n\t\t * quantized value by that percentage. \n\t\t * @param {Number|Time} val The subdivision to quantize to\n\t\t * @param {NormalRange} [percent=1] Move the time value\n\t\t * towards the quantized value by\n\t\t * a percentage.\n\t\t * @return {Tone.Time} this\n\t\t * @example\n\t\t * Tone.Time(21).quantize(2) //returns 22\n\t\t * Tone.Time(0.6).quantize(\"4n\", 0.5) //returns 0.55\n\t\t */\n\t Tone.Time.prototype.quantize = function (subdiv, percent) {\n\t percent = this.defaultArg(percent, 1);\n\t this._expr = function (expr, subdivision, percent) {\n\t expr = expr();\n\t subdivision = subdivision.toSeconds();\n\t var multiple = Math.round(expr / subdivision);\n\t var ideal = multiple * subdivision;\n\t var diff = ideal - expr;\n\t return expr + diff * percent;\n\t }.bind(this, this._expr, new this.constructor(subdiv), percent);\n\t return this;\n\t };\n\t /**\n\t\t * Adds the clock time to the time expression at the \n\t\t * moment of evaluation. \n\t\t * @return {Tone.Time} this\n\t\t */\n\t Tone.Time.prototype.addNow = function () {\n\t this._plusNow = true;\n\t return this;\n\t };\n\t /**\n\t\t * @override\n\t\t * Override the default value return when no arguments are passed in.\n\t\t * The default value is 'now'\n\t\t * @private\n\t\t */\n\t Tone.Time.prototype._defaultExpr = function () {\n\t this._plusNow = true;\n\t return this._noOp;\n\t };\n\t /**\n\t\t * Copies the value of time to this Time\n\t\t * @param {Tone.Time} time\n\t\t * @return {Time}\n\t\t */\n\t Tone.Time.prototype.copy = function (time) {\n\t Tone.TimeBase.prototype.copy.call(this, time);\n\t this._plusNow = time._plusNow;\n\t return this;\n\t };\n\t //CONVERSIONS//////////////////////////////////////////////////////////////\n\t /**\n\t\t * Convert a Time to Notation. Values will be thresholded to the nearest 128th note. \n\t\t * @return {Notation} \n\t\t * @example\n\t\t * //if the Transport is at 120bpm:\n\t\t * Tone.Time(2).toNotation();//returns \"1m\"\n\t\t */\n\t Tone.Time.prototype.toNotation = function () {\n\t var time = this.toSeconds();\n\t var testNotations = [\n\t '1m',\n\t '2n',\n\t '4n',\n\t '8n',\n\t '16n',\n\t '32n',\n\t '64n',\n\t '128n'\n\t ];\n\t var retNotation = this._toNotationHelper(time, testNotations);\n\t //try the same thing but with tripelets\n\t var testTripletNotations = [\n\t '1m',\n\t '2n',\n\t '2t',\n\t '4n',\n\t '4t',\n\t '8n',\n\t '8t',\n\t '16n',\n\t '16t',\n\t '32n',\n\t '32t',\n\t '64n',\n\t '64t',\n\t '128n'\n\t ];\n\t var retTripletNotation = this._toNotationHelper(time, testTripletNotations);\n\t //choose the simpler expression of the two\n\t if (retTripletNotation.split('+').length < retNotation.split('+').length) {\n\t return retTripletNotation;\n\t } else {\n\t return retNotation;\n\t }\n\t };\n\t /**\n\t\t * Helper method for Tone.toNotation\n\t\t * @param {Number} units \n\t\t * @param {Array} testNotations\n\t\t * @return {String}\n\t\t * @private\n\t\t */\n\t Tone.Time.prototype._toNotationHelper = function (units, testNotations) {\n\t //the threshold is the last value in the array\n\t var threshold = this._notationToUnits(testNotations[testNotations.length - 1]);\n\t var retNotation = '';\n\t for (var i = 0; i < testNotations.length; i++) {\n\t var notationTime = this._notationToUnits(testNotations[i]);\n\t //account for floating point errors (i.e. round up if the value is 0.999999)\n\t var multiple = units / notationTime;\n\t var floatingPointError = 0.000001;\n\t if (1 - multiple % 1 < floatingPointError) {\n\t multiple += floatingPointError;\n\t }\n\t multiple = Math.floor(multiple);\n\t if (multiple > 0) {\n\t if (multiple === 1) {\n\t retNotation += testNotations[i];\n\t } else {\n\t retNotation += multiple.toString() + '*' + testNotations[i];\n\t }\n\t units -= multiple * notationTime;\n\t if (units < threshold) {\n\t break;\n\t } else {\n\t retNotation += ' + ';\n\t }\n\t }\n\t }\n\t if (retNotation === '') {\n\t retNotation = '0';\n\t }\n\t return retNotation;\n\t };\n\t /**\n\t\t * Convert a notation value to the current units\n\t\t * @param {Notation} notation \n\t\t * @return {Number} \n\t\t * @private\n\t\t */\n\t Tone.Time.prototype._notationToUnits = function (notation) {\n\t var primaryExprs = this._primaryExpressions;\n\t var notationExprs = [\n\t primaryExprs.n,\n\t primaryExprs.t,\n\t primaryExprs.m\n\t ];\n\t for (var i = 0; i < notationExprs.length; i++) {\n\t var expr = notationExprs[i];\n\t var match = notation.match(expr.regexp);\n\t if (match) {\n\t return expr.method.call(this, match[1]);\n\t }\n\t }\n\t };\n\t /**\n\t\t * Return the time encoded as Bars:Beats:Sixteenths.\n\t\t * @return {BarsBeatsSixteenths}\n\t\t */\n\t Tone.Time.prototype.toBarsBeatsSixteenths = function () {\n\t var quarterTime = this._beatsToUnits(1);\n\t var quarters = this.toSeconds() / quarterTime;\n\t var measures = Math.floor(quarters / this._timeSignature());\n\t var sixteenths = quarters % 1 * 4;\n\t quarters = Math.floor(quarters) % this._timeSignature();\n\t sixteenths = sixteenths.toString();\n\t if (sixteenths.length > 3) {\n\t sixteenths = parseFloat(sixteenths).toFixed(3);\n\t }\n\t var progress = [\n\t measures,\n\t quarters,\n\t sixteenths\n\t ];\n\t return progress.join(':');\n\t };\n\t /**\n\t\t * Return the time in ticks.\n\t\t * @return {Ticks}\n\t\t */\n\t Tone.Time.prototype.toTicks = function () {\n\t var quarterTime = this._beatsToUnits(1);\n\t var quarters = this.valueOf() / quarterTime;\n\t return Math.floor(quarters * Tone.Transport.PPQ);\n\t };\n\t /**\n\t\t * Return the time in samples\n\t\t * @return {Samples} \n\t\t */\n\t Tone.Time.prototype.toSamples = function () {\n\t return this.toSeconds() * this.context.sampleRate;\n\t };\n\t /**\n\t\t * Return the time as a frequency value\n\t\t * @return {Frequency} \n\t\t * @example\n\t\t * Tone.Time(2).toFrequency(); //0.5\n\t\t */\n\t Tone.Time.prototype.toFrequency = function () {\n\t return 1 / this.toSeconds();\n\t };\n\t /**\n\t\t * Return the time in seconds.\n\t\t * @return {Seconds} \n\t\t */\n\t Tone.Time.prototype.toSeconds = function () {\n\t return this.valueOf();\n\t };\n\t /**\n\t\t * Return the time in milliseconds.\n\t\t * @return {Milliseconds} \n\t\t */\n\t Tone.Time.prototype.toMilliseconds = function () {\n\t return this.toSeconds() * 1000;\n\t };\n\t /**\n\t\t * Return the time in seconds.\n\t\t * @return {Seconds} \n\t\t */\n\t Tone.Time.prototype.valueOf = function () {\n\t var val = this._expr();\n\t return val + (this._plusNow ? this.now() : 0);\n\t };\n\t return Tone.Time;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Tone.Frequency is a primitive type for encoding Frequency values. \n\t\t * Eventually all time values are evaluated to hertz\n\t\t * using the `eval` method. \n\t\t * @constructor\n\t\t * @extends {Tone.TimeBase}\n\t\t * @param {String|Number} val The time value.\n\t\t * @param {String=} units The units of the value.\n\t\t * @example\n\t\t * Tone.Frequency(\"C3\") // 261\n\t\t * Tone.Frequency(38, \"midi\") //\n\t\t * Tone.Frequency(\"C3\").transpose(4);\n\t\t */\n\t Tone.Frequency = function (val, units) {\n\t if (this instanceof Tone.Frequency) {\n\t Tone.TimeBase.call(this, val, units);\n\t } else {\n\t return new Tone.Frequency(val, units);\n\t }\n\t };\n\t Tone.extend(Tone.Frequency, Tone.TimeBase);\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tAUGMENT BASE EXPRESSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t //clone the expressions so that \n\t //we can add more without modifying the original\n\t Tone.Frequency.prototype._primaryExpressions = Object.create(Tone.TimeBase.prototype._primaryExpressions);\n\t /*\n\t\t * midi type primary expression\n\t\t * @type {Object}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._primaryExpressions.midi = {\n\t regexp: /^(\\d+(?:\\.\\d+)?midi)/,\n\t method: function (value) {\n\t return this.midiToFrequency(value);\n\t }\n\t };\n\t /*\n\t\t * note type primary expression\n\t\t * @type {Object}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._primaryExpressions.note = {\n\t regexp: /^([a-g]{1}(?:b|#|x|bb)?)(-?[0-9]+)/i,\n\t method: function (pitch, octave) {\n\t var index = noteToScaleIndex[pitch.toLowerCase()];\n\t var noteNumber = index + (parseInt(octave) + 1) * 12;\n\t return this.midiToFrequency(noteNumber);\n\t }\n\t };\n\t /*\n\t\t * BeatsBarsSixteenths type primary expression\n\t\t * @type {Object}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._primaryExpressions.tr = {\n\t regexp: /^(\\d+(?:\\.\\d+)?):(\\d+(?:\\.\\d+)?):?(\\d+(?:\\.\\d+)?)?/,\n\t method: function (m, q, s) {\n\t var total = 1;\n\t if (m && m !== '0') {\n\t total *= this._beatsToUnits(this._timeSignature() * parseFloat(m));\n\t }\n\t if (q && q !== '0') {\n\t total *= this._beatsToUnits(parseFloat(q));\n\t }\n\t if (s && s !== '0') {\n\t total *= this._beatsToUnits(parseFloat(s) / 4);\n\t }\n\t return total;\n\t }\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tEXPRESSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Transposes the frequency by the given number of semitones.\n\t\t * @param {Interval} interval\n\t\t * @return {Tone.Frequency} this\n\t\t * @example\n\t\t * Tone.Frequency(\"A4\").transpose(3); //\"C5\"\n\t\t */\n\t Tone.Frequency.prototype.transpose = function (interval) {\n\t this._expr = function (expr, interval) {\n\t var val = expr();\n\t return val * this.intervalToFrequencyRatio(interval);\n\t }.bind(this, this._expr, interval);\n\t return this;\n\t };\n\t /**\n\t\t * Takes an array of semitone intervals and returns\n\t\t * an array of frequencies transposed by those intervals.\n\t\t * @param {Array} intervals\n\t\t * @return {Tone.Frequency} this\n\t\t * @example\n\t\t * Tone.Frequency(\"A4\").harmonize([0, 3, 7]); //[\"A4\", \"C5\", \"E5\"]\n\t\t */\n\t Tone.Frequency.prototype.harmonize = function (intervals) {\n\t this._expr = function (expr, intervals) {\n\t var val = expr();\n\t var ret = [];\n\t for (var i = 0; i < intervals.length; i++) {\n\t ret[i] = val * this.intervalToFrequencyRatio(intervals[i]);\n\t }\n\t return ret;\n\t }.bind(this, this._expr, intervals);\n\t return this;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tUNIT CONVERSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Return the value of the frequency as a MIDI note\n\t\t * @return {MIDI}\n\t\t * @example\n\t\t * Tone.Frequency(\"C4\").toMidi(); //60\n\t\t */\n\t Tone.Frequency.prototype.toMidi = function () {\n\t return this.frequencyToMidi(this.valueOf());\n\t };\n\t /**\n\t\t * Return the value of the frequency in Scientific Pitch Notation\n\t\t * @return {Note}\n\t\t * @example\n\t\t * Tone.Frequency(69, \"midi\").toNote(); //\"A4\"\n\t\t */\n\t Tone.Frequency.prototype.toNote = function () {\n\t var freq = this.valueOf();\n\t var log = Math.log(freq / Tone.Frequency.A4) / Math.LN2;\n\t var noteNumber = Math.round(12 * log) + 57;\n\t var octave = Math.floor(noteNumber / 12);\n\t if (octave < 0) {\n\t noteNumber += -12 * octave;\n\t }\n\t var noteName = scaleIndexToNote[noteNumber % 12];\n\t return noteName + octave.toString();\n\t };\n\t /**\n\t\t * Return the duration of one cycle in seconds.\n\t\t * @return {Seconds}\n\t\t */\n\t Tone.Frequency.prototype.toSeconds = function () {\n\t return 1 / this.valueOf();\n\t };\n\t /**\n\t\t * Return the value in Hertz\n\t\t * @return {Frequency}\n\t\t */\n\t Tone.Frequency.prototype.toFrequency = function () {\n\t return this.valueOf();\n\t };\n\t /**\n\t\t * Return the duration of one cycle in ticks\n\t\t * @return {Ticks}\n\t\t */\n\t Tone.Frequency.prototype.toTicks = function () {\n\t var quarterTime = this._beatsToUnits(1);\n\t var quarters = this.valueOf() / quarterTime;\n\t return Math.floor(quarters * Tone.Transport.PPQ);\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tUNIT CONVERSIONS HELPERS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Returns the value of a frequency in the current units\n\t\t * @param {Frequency} freq\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._frequencyToUnits = function (freq) {\n\t return freq;\n\t };\n\t /**\n\t\t * Returns the value of a tick in the current time units\n\t\t * @param {Ticks} ticks\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._ticksToUnits = function (ticks) {\n\t return 1 / (ticks * 60 / (Tone.Transport.bpm.value * Tone.Transport.PPQ));\n\t };\n\t /**\n\t\t * Return the value of the beats in the current units\n\t\t * @param {Number} beats\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._beatsToUnits = function (beats) {\n\t return 1 / Tone.TimeBase.prototype._beatsToUnits.call(this, beats);\n\t };\n\t /**\n\t\t * Returns the value of a second in the current units\n\t\t * @param {Seconds} seconds\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._secondsToUnits = function (seconds) {\n\t return 1 / seconds;\n\t };\n\t /**\n\t\t * The default units if none are given.\n\t\t * @private\n\t\t */\n\t Tone.Frequency.prototype._defaultUnits = 'hz';\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tFREQUENCY CONVERSIONS\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Note to scale index\n\t\t * @type {Object}\n\t\t */\n\t var noteToScaleIndex = {\n\t 'cbb': -2,\n\t 'cb': -1,\n\t 'c': 0,\n\t 'c#': 1,\n\t 'cx': 2,\n\t 'dbb': 0,\n\t 'db': 1,\n\t 'd': 2,\n\t 'd#': 3,\n\t 'dx': 4,\n\t 'ebb': 2,\n\t 'eb': 3,\n\t 'e': 4,\n\t 'e#': 5,\n\t 'ex': 6,\n\t 'fbb': 3,\n\t 'fb': 4,\n\t 'f': 5,\n\t 'f#': 6,\n\t 'fx': 7,\n\t 'gbb': 5,\n\t 'gb': 6,\n\t 'g': 7,\n\t 'g#': 8,\n\t 'gx': 9,\n\t 'abb': 7,\n\t 'ab': 8,\n\t 'a': 9,\n\t 'a#': 10,\n\t 'ax': 11,\n\t 'bbb': 9,\n\t 'bb': 10,\n\t 'b': 11,\n\t 'b#': 12,\n\t 'bx': 13\n\t };\n\t /**\n\t\t * scale index to note (sharps)\n\t\t * @type {Array}\n\t\t */\n\t var scaleIndexToNote = [\n\t 'C',\n\t 'C#',\n\t 'D',\n\t 'D#',\n\t 'E',\n\t 'F',\n\t 'F#',\n\t 'G',\n\t 'G#',\n\t 'A',\n\t 'A#',\n\t 'B'\n\t ];\n\t /**\n\t\t * The [concert pitch](https://en.wikipedia.org/wiki/Concert_pitch)\n\t\t * A4's values in Hertz. \n\t\t * @type {Frequency}\n\t\t * @static\n\t\t */\n\t Tone.Frequency.A4 = 440;\n\t /**\n\t\t * Convert a MIDI note to frequency value. \n\t\t * @param {MIDI} midi The midi number to convert.\n\t\t * @return {Frequency} the corresponding frequency value\n\t\t * @example\n\t\t * tone.midiToFrequency(69); // returns 440\n\t\t */\n\t Tone.Frequency.prototype.midiToFrequency = function (midi) {\n\t return Tone.Frequency.A4 * Math.pow(2, (midi - 69) / 12);\n\t };\n\t /**\n\t\t * Convert a frequency value to a MIDI note.\n\t\t * @param {Frequency} frequency The value to frequency value to convert.\n\t\t * @returns {MIDI}\n\t\t * @example\n\t\t * tone.midiToFrequency(440); // returns 69\n\t\t */\n\t Tone.Frequency.prototype.frequencyToMidi = function (frequency) {\n\t return 69 + 12 * Math.log(frequency / Tone.Frequency.A4) / Math.LN2;\n\t };\n\t return Tone.Frequency;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Tone.TransportTime is a the time along the Transport's\n\t\t * timeline. It is similar to Tone.Time, but instead of evaluating\n\t\t * against the AudioContext's clock, it is evaluated against\n\t\t * the Transport's position. See [TransportTime wiki](https://github.com/Tonejs/Tone.js/wiki/TransportTime).\n\t\t * @constructor\n\t\t * @param {Time} val The time value as a number or string\n\t\t * @param {String=} units Unit values\n\t\t * @extends {Tone.Time}\n\t\t */\n\t Tone.TransportTime = function (val, units) {\n\t if (this instanceof Tone.TransportTime) {\n\t Tone.Time.call(this, val, units);\n\t } else {\n\t return new Tone.TransportTime(val, units);\n\t }\n\t };\n\t Tone.extend(Tone.TransportTime, Tone.Time);\n\t //clone the expressions so that \n\t //we can add more without modifying the original\n\t Tone.TransportTime.prototype._unaryExpressions = Object.create(Tone.Time.prototype._unaryExpressions);\n\t /**\n\t\t * Adds an additional unary expression\n\t\t * which quantizes values to the next subdivision\n\t\t * @type {Object}\n\t\t * @private\n\t\t */\n\t Tone.TransportTime.prototype._unaryExpressions.quantize = {\n\t regexp: /^@/,\n\t method: function (rh) {\n\t var subdivision = this._secondsToTicks(rh());\n\t var multiple = Math.ceil(Tone.Transport.ticks / subdivision);\n\t return this._ticksToUnits(multiple * subdivision);\n\t }\n\t };\n\t /**\n\t\t * Convert seconds into ticks\n\t\t * @param {Seconds} seconds\n\t\t * @return {Ticks}\n\t\t * @private\n\t\t */\n\t Tone.TransportTime.prototype._secondsToTicks = function (seconds) {\n\t var quarterTime = this._beatsToUnits(1);\n\t var quarters = seconds / quarterTime;\n\t return Math.round(quarters * Tone.Transport.PPQ);\n\t };\n\t /**\n\t\t * Evaluate the time expression. Returns values in ticks\n\t\t * @return {Ticks}\n\t\t */\n\t Tone.TransportTime.prototype.valueOf = function () {\n\t var val = this._secondsToTicks(this._expr());\n\t return val + (this._plusNow ? Tone.Transport.ticks : 0);\n\t };\n\t /**\n\t\t * Return the time in ticks.\n\t\t * @return {Ticks}\n\t\t */\n\t Tone.TransportTime.prototype.toTicks = function () {\n\t return this.valueOf();\n\t };\n\t /**\n\t\t * Return the time in seconds.\n\t\t * @return {Seconds}\n\t\t */\n\t Tone.TransportTime.prototype.toSeconds = function () {\n\t var val = this._expr();\n\t return val + (this._plusNow ? Tone.Transport.seconds : 0);\n\t };\n\t /**\n\t\t * Return the time as a frequency value\n\t\t * @return {Frequency} \n\t\t */\n\t Tone.TransportTime.prototype.toFrequency = function () {\n\t return 1 / this.toSeconds();\n\t };\n\t return Tone.TransportTime;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Emitter gives classes which extend it\n\t\t * the ability to listen for and emit events. \n\t\t * Inspiration and reference from Jerome Etienne's [MicroEvent](https://github.com/jeromeetienne/microevent.js).\n\t\t * MIT (c) 2011 Jerome Etienne.\n\t\t * \n\t\t * @extends {Tone}\n\t\t */\n\t Tone.Emitter = function () {\n\t /**\n\t\t\t * Contains all of the events.\n\t\t\t * @private\n\t\t\t * @type {Object}\n\t\t\t */\n\t this._events = {};\n\t };\n\t Tone.extend(Tone.Emitter);\n\t /**\n\t\t * Bind a callback to a specific event.\n\t\t * @param {String} event The name of the event to listen for.\n\t\t * @param {Function} callback The callback to invoke when the\n\t\t * event is emitted\n\t\t * @return {Tone.Emitter} this\n\t\t */\n\t Tone.Emitter.prototype.on = function (event, callback) {\n\t //split the event\n\t var events = event.split(/\\W+/);\n\t for (var i = 0; i < events.length; i++) {\n\t var eventName = events[i];\n\t if (!this._events.hasOwnProperty(eventName)) {\n\t this._events[eventName] = [];\n\t }\n\t this._events[eventName].push(callback);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Remove the event listener.\n\t\t * @param {String} event The event to stop listening to.\n\t\t * @param {Function=} callback The callback which was bound to \n\t\t * the event with Tone.Emitter.on.\n\t\t * If no callback is given, all callbacks\n\t\t * events are removed.\n\t\t * @return {Tone.Emitter} this\n\t\t */\n\t Tone.Emitter.prototype.off = function (event, callback) {\n\t var events = event.split(/\\W+/);\n\t for (var ev = 0; ev < events.length; ev++) {\n\t event = events[ev];\n\t if (this._events.hasOwnProperty(event)) {\n\t if (Tone.prototype.isUndef(callback)) {\n\t this._events[event] = [];\n\t } else {\n\t var eventList = this._events[event];\n\t for (var i = 0; i < eventList.length; i++) {\n\t if (eventList[i] === callback) {\n\t eventList.splice(i, 1);\n\t }\n\t }\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Invoke all of the callbacks bound to the event\n\t\t * with any arguments passed in. \n\t\t * @param {String} event The name of the event.\n\t\t * @param {*...} args The arguments to pass to the functions listening.\n\t\t * @return {Tone.Emitter} this\n\t\t */\n\t Tone.Emitter.prototype.emit = function (event) {\n\t if (this._events) {\n\t var args = Array.apply(null, arguments).slice(1);\n\t if (this._events.hasOwnProperty(event)) {\n\t var eventList = this._events[event];\n\t for (var i = 0, len = eventList.length; i < len; i++) {\n\t eventList[i].apply(this, args);\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Add Emitter functions (on/off/emit) to the object\n\t\t * @param {Object|Function} object The object or class to extend.\n\t\t */\n\t Tone.Emitter.mixin = function (object) {\n\t var functions = [\n\t 'on',\n\t 'off',\n\t 'emit'\n\t ];\n\t object._events = {};\n\t for (var i = 0; i < functions.length; i++) {\n\t var func = functions[i];\n\t var emitterFunc = Tone.Emitter.prototype[func];\n\t object[func] = emitterFunc;\n\t }\n\t };\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.Emitter} this\n\t\t */\n\t Tone.Emitter.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._events = null;\n\t return this;\n\t };\n\t return Tone.Emitter;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * shim\n\t\t * @private\n\t\t */\n\t if (!window.hasOwnProperty('AudioContext') && window.hasOwnProperty('webkitAudioContext')) {\n\t window.AudioContext = window.webkitAudioContext;\n\t }\n\t /**\n\t\t * @class Wrapper around the native AudioContext.\n\t\t * @extends {Tone.Emitter}\n\t\t * @param {AudioContext=} context optionally pass in a context\n\t\t */\n\t Tone.Context = function (context) {\n\t Tone.Emitter.call(this);\n\t if (!context) {\n\t context = new window.AudioContext();\n\t }\n\t this._context = context;\n\t // extend all of the methods\n\t for (var prop in this._context) {\n\t this._defineProperty(this._context, prop);\n\t }\n\t ///////////////////////////////////////////////////////////////////////\n\t // WORKER\n\t ///////////////////////////////////////////////////////////////////////\n\t /**\n\t\t\t * The default latency hint\n\t\t\t * @type {String}\n\t\t\t * @private\n\t\t\t */\n\t this._latencyHint = 'interactive';\n\t /**\n\t\t\t * The amount of time events are scheduled\n\t\t\t * into the future\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._lookAhead = 0.1;\n\t /**\n\t\t\t * How often the update look runs\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._updateInterval = this._lookAhead / 3;\n\t /**\n\t\t\t * A reference to the actual computed update interval\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._computedUpdateInterval = 0;\n\t /**\n\t\t\t * The web worker which is used to update Tone.Clock\n\t\t\t * @private\n\t\t\t * @type {WebWorker}\n\t\t\t */\n\t this._worker = this._createWorker();\n\t /**\n\t\t\t * An object containing all of the constants AudioBufferSourceNodes\n\t\t\t * @type {Object}\n\t\t\t * @private\n\t\t\t */\n\t this._constants = {};\n\t };\n\t Tone.extend(Tone.Context, Tone.Emitter);\n\t Tone.Emitter.mixin(Tone.Context);\n\t /**\n\t\t * Define a property on this Tone.Context. \n\t\t * This is used to extend the native AudioContext\n\t\t * @param {AudioContext} context\n\t\t * @param {String} prop \n\t\t * @private\n\t\t */\n\t Tone.Context.prototype._defineProperty = function (context, prop) {\n\t if (this.isUndef(this[prop])) {\n\t Object.defineProperty(this, prop, {\n\t get: function () {\n\t if (typeof context[prop] === 'function') {\n\t return context[prop].bind(context);\n\t } else {\n\t return context[prop];\n\t }\n\t },\n\t set: function (val) {\n\t context[prop] = val;\n\t }\n\t });\n\t }\n\t };\n\t /**\n\t\t * The current audio context time\n\t\t * @return {Number}\n\t\t */\n\t Tone.Context.prototype.now = function () {\n\t return this._context.currentTime;\n\t };\n\t /**\n\t\t * Generate a web worker\n\t\t * @return {WebWorker}\n\t\t * @private\n\t\t */\n\t Tone.Context.prototype._createWorker = function () {\n\t //URL Shim\n\t window.URL = window.URL || window.webkitURL;\n\t var blob = new Blob([//the initial timeout time\n\t 'var timeoutTime = ' + (this._updateInterval * 1000).toFixed(1) + ';' + //onmessage callback\n\t 'self.onmessage = function(msg){' + '\\ttimeoutTime = parseInt(msg.data);' + '};' + //the tick function which posts a message\n\t //and schedules a new tick\n\t 'function tick(){' + '\\tsetTimeout(tick, timeoutTime);' + '\\tself.postMessage(\\'tick\\');' + '}' + //call tick initially\n\t 'tick();']);\n\t var blobUrl = URL.createObjectURL(blob);\n\t var worker = new Worker(blobUrl);\n\t worker.addEventListener('message', function () {\n\t // tick the clock\n\t this.emit('tick');\n\t }.bind(this));\n\t //lag compensation\n\t worker.addEventListener('message', function () {\n\t var now = this.now();\n\t if (this.isNumber(this._lastUpdate)) {\n\t var diff = now - this._lastUpdate;\n\t this._computedUpdateInterval = Math.max(diff, this._computedUpdateInterval * 0.97);\n\t }\n\t this._lastUpdate = now;\n\t }.bind(this));\n\t return worker;\n\t };\n\t /**\n\t\t * Generate a looped buffer at some constant value.\n\t\t * @param {Number} val\n\t\t * @return {BufferSourceNode}\n\t\t */\n\t Tone.Context.prototype.getConstant = function (val) {\n\t if (this._constants[val]) {\n\t return this._constants[val];\n\t } else {\n\t var buffer = this._context.createBuffer(1, 128, this._context.sampleRate);\n\t var arr = buffer.getChannelData(0);\n\t for (var i = 0; i < arr.length; i++) {\n\t arr[i] = val;\n\t }\n\t var constant = this._context.createBufferSource();\n\t constant.channelCount = 1;\n\t constant.channelCountMode = 'explicit';\n\t constant.buffer = buffer;\n\t constant.loop = true;\n\t constant.start(0);\n\t this._constants[val] = constant;\n\t return constant;\n\t }\n\t };\n\t /**\n\t\t * This is the time that the clock is falling behind\n\t\t * the scheduled update interval. The Context automatically\n\t\t * adjusts for the lag and schedules further in advance.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Context\n\t\t * @name lag\n\t\t * @static\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Context.prototype, 'lag', {\n\t get: function () {\n\t var diff = this._computedUpdateInterval - this._updateInterval;\n\t diff = Math.max(diff, 0);\n\t return diff;\n\t }\n\t });\n\t /**\n\t\t * The amount of time in advance that events are scheduled.\n\t\t * The lookAhead will adjust slightly in response to the \n\t\t * measured update time to try to avoid clicks.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Context\n\t\t * @name lookAhead\n\t\t * @static\n\t\t */\n\t Object.defineProperty(Tone.Context.prototype, 'lookAhead', {\n\t get: function () {\n\t return this._lookAhead;\n\t },\n\t set: function (lA) {\n\t this._lookAhead = lA;\n\t }\n\t });\n\t /**\n\t\t * How often the Web Worker callback is invoked.\n\t\t * This number corresponds to how responsive the scheduling\n\t\t * can be. Context.updateInterval + Context.lookAhead gives you the\n\t\t * total latency between scheduling an event and hearing it.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Context\n\t\t * @name updateInterval\n\t\t * @static\n\t\t */\n\t Object.defineProperty(Tone.Context.prototype, 'updateInterval', {\n\t get: function () {\n\t return this._updateInterval;\n\t },\n\t set: function (interval) {\n\t this._updateInterval = Math.max(interval, Tone.prototype.blockTime);\n\t this._worker.postMessage(Math.max(interval * 1000, 1));\n\t }\n\t });\n\t /**\n\t\t * The type of playback, which affects tradeoffs between audio \n\t\t * output latency and responsiveness. \n\t\t * \n\t\t * In addition to setting the value in seconds, the latencyHint also\n\t\t * accepts the strings \"interactive\" (prioritizes low latency), \n\t\t * \"playback\" (prioritizes sustained playback), \"balanced\" (balances\n\t\t * latency and performance), and \"fastest\" (lowest latency, might glitch more often). \n\t\t * @type {String|Seconds}\n\t\t * @memberOf Tone.Context#\n\t\t * @name latencyHint\n\t\t * @static\n\t\t * @example\n\t\t * //set the lookAhead to 0.3 seconds\n\t\t * Tone.context.latencyHint = 0.3;\n\t\t */\n\t Object.defineProperty(Tone.Context.prototype, 'latencyHint', {\n\t get: function () {\n\t return this._latencyHint;\n\t },\n\t set: function (hint) {\n\t var lookAhead = hint;\n\t this._latencyHint = hint;\n\t if (this.isString(hint)) {\n\t switch (hint) {\n\t case 'interactive':\n\t lookAhead = 0.1;\n\t this._context.latencyHint = hint;\n\t break;\n\t case 'playback':\n\t lookAhead = 0.8;\n\t this._context.latencyHint = hint;\n\t break;\n\t case 'balanced':\n\t lookAhead = 0.25;\n\t this._context.latencyHint = hint;\n\t break;\n\t case 'fastest':\n\t lookAhead = 0.01;\n\t break;\n\t }\n\t }\n\t this.lookAhead = lookAhead;\n\t this.updateInterval = lookAhead / 3;\n\t }\n\t });\n\t /**\n\t\t * Shim all connect/disconnect and some deprecated methods which are still in\n\t\t * some older implementations.\n\t\t * @private\n\t\t */\n\t function shimConnect() {\n\t var nativeConnect = AudioNode.prototype.connect;\n\t var nativeDisconnect = AudioNode.prototype.disconnect;\n\t //replace the old connect method\n\t function toneConnect(B, outNum, inNum) {\n\t if (B.input) {\n\t if (Array.isArray(B.input)) {\n\t if (Tone.prototype.isUndef(inNum)) {\n\t inNum = 0;\n\t }\n\t this.connect(B.input[inNum]);\n\t } else {\n\t this.connect(B.input, outNum, inNum);\n\t }\n\t } else {\n\t try {\n\t if (B instanceof AudioNode) {\n\t nativeConnect.call(this, B, outNum, inNum);\n\t } else {\n\t nativeConnect.call(this, B, outNum);\n\t }\n\t } catch (e) {\n\t throw new Error('error connecting to node: ' + B + '\\n' + e);\n\t }\n\t }\n\t }\n\t //replace the old disconnect method\n\t function toneDisconnect(B, outNum, inNum) {\n\t if (B && B.input && Array.isArray(B.input)) {\n\t if (Tone.prototype.isUndef(inNum)) {\n\t inNum = 0;\n\t }\n\t this.disconnect(B.input[inNum], outNum, inNum);\n\t } else if (B && B.input) {\n\t this.disconnect(B.input, outNum, inNum);\n\t } else {\n\t try {\n\t nativeDisconnect.apply(this, arguments);\n\t } catch (e) {\n\t throw new Error('error disconnecting node: ' + B + '\\n' + e);\n\t }\n\t }\n\t }\n\t if (AudioNode.prototype.connect !== toneConnect) {\n\t AudioNode.prototype.connect = toneConnect;\n\t AudioNode.prototype.disconnect = toneDisconnect;\n\t }\n\t }\n\t // set the audio context initially\n\t if (Tone.supported) {\n\t shimConnect();\n\t Tone.context = new Tone.Context();\n\t } else {\n\t console.warn('This browser does not support Tone.js');\n\t }\n\t return Tone.Context;\n\t});\n\tModule(function (Tone) {\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tTYPES\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Units which a value can take on.\n\t\t * @enum {String}\n\t\t */\n\t Tone.Type = {\n\t /** \n\t\t\t * Default units\n\t\t\t * @typedef {Default}\n\t\t\t */\n\t Default: 'number',\n\t /**\n\t\t\t * Time can be described in a number of ways. Read more [Time](https://github.com/Tonejs/Tone.js/wiki/Time).\n\t\t\t *\n\t\t\t *
connect. \n\t\t *\n\t\t * @override\n\t\t * @param {AudioParam|AudioNode|Tone.Signal|Tone} node \n\t\t * @param {number} [outputNumber=0] The output number to connect from.\n\t\t * @param {number} [inputNumber=0] The input number to connect to.\n\t\t * @returns {Tone.SignalBase} this\n\t\t * @method\n\t\t */\n\t Tone.Signal.prototype.connect = Tone.SignalBase.prototype.connect;\n\t /**\n\t\t * dispose and disconnect\n\t\t * @returns {Tone.Signal} this\n\t\t */\n\t Tone.Signal.prototype.dispose = function () {\n\t Tone.Param.prototype.dispose.call(this);\n\t this._param = null;\n\t this._gain.disconnect();\n\t this._gain = null;\n\t return this;\n\t };\n\t return Tone.Signal;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A Timeline class for scheduling and maintaining state\n\t\t * along a timeline. All events must have a \"time\" property. \n\t\t * Internally, events are stored in time order for fast \n\t\t * retrieval.\n\t\t * @extends {Tone}\n\t\t * @param {Positive} [memory=Infinity] The number of previous events that are retained.\n\t\t */\n\t Tone.Timeline = function () {\n\t var options = this.optionsObject(arguments, ['memory'], Tone.Timeline.defaults);\n\t /**\n\t\t\t * The array of scheduled timeline events\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._timeline = [];\n\t /**\n\t\t\t * An array of items to remove from the list. \n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._toRemove = [];\n\t /**\n\t\t\t * Flag if the tieline is mid iteration\n\t\t\t * @private\n\t\t\t * @type {Boolean}\n\t\t\t */\n\t this._iterating = false;\n\t /**\n\t\t\t * The memory of the timeline, i.e.\n\t\t\t * how many events in the past it will retain\n\t\t\t * @type {Positive}\n\t\t\t */\n\t this.memory = options.memory;\n\t };\n\t Tone.extend(Tone.Timeline);\n\t /**\n\t\t * the default parameters\n\t\t * @static\n\t\t * @const\n\t\t */\n\t Tone.Timeline.defaults = { 'memory': Infinity };\n\t /**\n\t\t * The number of items in the timeline.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Timeline#\n\t\t * @name length\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Timeline.prototype, 'length', {\n\t get: function () {\n\t return this._timeline.length;\n\t }\n\t });\n\t /**\n\t\t * Insert an event object onto the timeline. Events must have a \"time\" attribute.\n\t\t * @param {Object} event The event object to insert into the \n\t\t * timeline. \n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.add = function (event) {\n\t //the event needs to have a time attribute\n\t if (this.isUndef(event.time)) {\n\t throw new Error('Tone.Timeline: events must have a time attribute');\n\t }\n\t if (this._timeline.length) {\n\t var index = this._search(event.time);\n\t this._timeline.splice(index + 1, 0, event);\n\t } else {\n\t this._timeline.push(event);\n\t }\n\t //if the length is more than the memory, remove the previous ones\n\t if (this.length > this.memory) {\n\t var diff = this.length - this.memory;\n\t this._timeline.splice(0, diff);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Remove an event from the timeline.\n\t\t * @param {Object} event The event object to remove from the list.\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.remove = function (event) {\n\t if (this._iterating) {\n\t this._toRemove.push(event);\n\t } else {\n\t var index = this._timeline.indexOf(event);\n\t if (index !== -1) {\n\t this._timeline.splice(index, 1);\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Get the nearest event whose time is less than or equal to the given time.\n\t\t * @param {Number} time The time to query.\n\t\t * @returns {Object} The event object set after that time.\n\t\t */\n\t Tone.Timeline.prototype.get = function (time) {\n\t var index = this._search(time);\n\t if (index !== -1) {\n\t return this._timeline[index];\n\t } else {\n\t return null;\n\t }\n\t };\n\t /**\n\t\t * Return the first event in the timeline without removing it\n\t\t * @returns {Object} The first event object\n\t\t */\n\t Tone.Timeline.prototype.peek = function () {\n\t return this._timeline[0];\n\t };\n\t /**\n\t\t * Return the first event in the timeline and remove it\n\t\t * @returns {Object} The first event object\n\t\t */\n\t Tone.Timeline.prototype.shift = function () {\n\t return this._timeline.shift();\n\t };\n\t /**\n\t\t * Get the event which is scheduled after the given time.\n\t\t * @param {Number} time The time to query.\n\t\t * @returns {Object} The event object after the given time\n\t\t */\n\t Tone.Timeline.prototype.getAfter = function (time) {\n\t var index = this._search(time);\n\t if (index + 1 < this._timeline.length) {\n\t return this._timeline[index + 1];\n\t } else {\n\t return null;\n\t }\n\t };\n\t /**\n\t\t * Get the event before the event at the given time.\n\t\t * @param {Number} time The time to query.\n\t\t * @returns {Object} The event object before the given time\n\t\t */\n\t Tone.Timeline.prototype.getBefore = function (time) {\n\t var len = this._timeline.length;\n\t //if it's after the last item, return the last item\n\t if (len > 0 && this._timeline[len - 1].time < time) {\n\t return this._timeline[len - 1];\n\t }\n\t var index = this._search(time);\n\t if (index - 1 >= 0) {\n\t return this._timeline[index - 1];\n\t } else {\n\t return null;\n\t }\n\t };\n\t /**\n\t\t * Cancel events after the given time\n\t\t * @param {Number} time The time to query.\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.cancel = function (after) {\n\t if (this._timeline.length > 1) {\n\t var index = this._search(after);\n\t if (index >= 0) {\n\t if (this._timeline[index].time === after) {\n\t //get the first item with that time\n\t for (var i = index; i >= 0; i--) {\n\t if (this._timeline[i].time === after) {\n\t index = i;\n\t } else {\n\t break;\n\t }\n\t }\n\t this._timeline = this._timeline.slice(0, index);\n\t } else {\n\t this._timeline = this._timeline.slice(0, index + 1);\n\t }\n\t } else {\n\t this._timeline = [];\n\t }\n\t } else if (this._timeline.length === 1) {\n\t //the first item's time\n\t if (this._timeline[0].time >= after) {\n\t this._timeline = [];\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Cancel events before or equal to the given time.\n\t\t * @param {Number} time The time to cancel before.\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.cancelBefore = function (time) {\n\t if (this._timeline.length) {\n\t var index = this._search(time);\n\t if (index >= 0) {\n\t this._timeline = this._timeline.slice(index + 1);\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Does a binary serach on the timeline array and returns the \n\t\t * nearest event index whose time is after or equal to the given time.\n\t\t * If a time is searched before the first index in the timeline, -1 is returned.\n\t\t * If the time is after the end, the index of the last item is returned.\n\t\t * @param {Number} time \n\t\t * @return {Number} the index in the timeline array \n\t\t * @private\n\t\t */\n\t Tone.Timeline.prototype._search = function (time) {\n\t var beginning = 0;\n\t var len = this._timeline.length;\n\t var end = len;\n\t if (len > 0 && this._timeline[len - 1].time <= time) {\n\t return len - 1;\n\t }\n\t while (beginning < end) {\n\t // calculate the midpoint for roughly equal partition\n\t var midPoint = Math.floor(beginning + (end - beginning) / 2);\n\t var event = this._timeline[midPoint];\n\t var nextEvent = this._timeline[midPoint + 1];\n\t if (event.time === time) {\n\t //choose the last one that has the same time\n\t for (var i = midPoint; i < this._timeline.length; i++) {\n\t var testEvent = this._timeline[i];\n\t if (testEvent.time === time) {\n\t midPoint = i;\n\t }\n\t }\n\t return midPoint;\n\t } else if (event.time < time && nextEvent.time > time) {\n\t return midPoint;\n\t } else if (event.time > time) {\n\t //search lower\n\t end = midPoint;\n\t } else if (event.time < time) {\n\t //search upper\n\t beginning = midPoint + 1;\n\t }\n\t }\n\t return -1;\n\t };\n\t /**\n\t\t * Internal iterator. Applies extra safety checks for \n\t\t * removing items from the array. \n\t\t * @param {Function} callback \n\t\t * @param {Number=} lowerBound \n\t\t * @param {Number=} upperBound \n\t\t * @private\n\t\t */\n\t Tone.Timeline.prototype._iterate = function (callback, lowerBound, upperBound) {\n\t this._iterating = true;\n\t lowerBound = this.defaultArg(lowerBound, 0);\n\t upperBound = this.defaultArg(upperBound, this._timeline.length - 1);\n\t for (var i = lowerBound; i <= upperBound; i++) {\n\t callback(this._timeline[i]);\n\t }\n\t this._iterating = false;\n\t if (this._toRemove.length > 0) {\n\t for (var j = 0; j < this._toRemove.length; j++) {\n\t var index = this._timeline.indexOf(this._toRemove[j]);\n\t if (index !== -1) {\n\t this._timeline.splice(index, 1);\n\t }\n\t }\n\t this._toRemove = [];\n\t }\n\t };\n\t /**\n\t\t * Iterate over everything in the array\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.forEach = function (callback) {\n\t this._iterate(callback);\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over everything in the array at or before the given time.\n\t\t * @param {Number} time The time to check if items are before\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.forEachBefore = function (time, callback) {\n\t //iterate over the items in reverse so that removing an item doesn't break things\n\t var upperBound = this._search(time);\n\t if (upperBound !== -1) {\n\t this._iterate(callback, 0, upperBound);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over everything in the array after the given time.\n\t\t * @param {Number} time The time to check if items are before\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.forEachAfter = function (time, callback) {\n\t //iterate over the items in reverse so that removing an item doesn't break things\n\t var lowerBound = this._search(time);\n\t this._iterate(callback, lowerBound + 1);\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over everything in the array at or after the given time. Similar to \n\t\t * forEachAfter, but includes the item(s) at the given time.\n\t\t * @param {Number} time The time to check if items are before\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.forEachFrom = function (time, callback) {\n\t //iterate over the items in reverse so that removing an item doesn't break things\n\t var lowerBound = this._search(time);\n\t //work backwards until the event time is less than time\n\t while (lowerBound >= 0 && this._timeline[lowerBound].time >= time) {\n\t lowerBound--;\n\t }\n\t this._iterate(callback, lowerBound + 1);\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over everything in the array at the given time\n\t\t * @param {Number} time The time to check if items are before\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.forEachAtTime = function (time, callback) {\n\t //iterate over the items in reverse so that removing an item doesn't break things\n\t var upperBound = this._search(time);\n\t if (upperBound !== -1) {\n\t this._iterate(function (event) {\n\t if (event.time === time) {\n\t callback(event);\n\t }\n\t }, 0, upperBound);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.Timeline} this\n\t\t */\n\t Tone.Timeline.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._timeline = null;\n\t this._toRemove = null;\n\t };\n\t return Tone.Timeline;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A signal which adds the method getValueAtTime. \n\t\t * Code and inspiration from https://github.com/jsantell/web-audio-automation-timeline\n\t\t * @extends {Tone.Param}\n\t\t * @param {Number=} value The initial value of the signal\n\t\t * @param {String=} units The conversion units of the signal.\n\t\t */\n\t Tone.TimelineSignal = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'value',\n\t 'units'\n\t ], Tone.Signal.defaults);\n\t /**\n\t\t\t * The scheduled events\n\t\t\t * @type {Tone.Timeline}\n\t\t\t * @private\n\t\t\t */\n\t this._events = new Tone.Timeline(10);\n\t //constructors\n\t Tone.Signal.apply(this, options);\n\t options.param = this._param;\n\t Tone.Param.call(this, options);\n\t /**\n\t\t\t * The initial scheduled value\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._initial = this._fromUnits(this._param.value);\n\t };\n\t Tone.extend(Tone.TimelineSignal, Tone.Param);\n\t /**\n\t\t * The event types of a schedulable signal.\n\t\t * @enum {String}\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.Type = {\n\t Linear: 'linear',\n\t Exponential: 'exponential',\n\t Target: 'target',\n\t Curve: 'curve',\n\t Set: 'set'\n\t };\n\t /**\n\t\t * The current value of the signal. \n\t\t * @memberOf Tone.TimelineSignal#\n\t\t * @type {Number}\n\t\t * @name value\n\t\t */\n\t Object.defineProperty(Tone.TimelineSignal.prototype, 'value', {\n\t get: function () {\n\t var now = this.now();\n\t var val = this.getValueAtTime(now);\n\t return this._toUnits(val);\n\t },\n\t set: function (value) {\n\t var convertedVal = this._fromUnits(value);\n\t this._initial = convertedVal;\n\t this.cancelScheduledValues();\n\t this._param.value = convertedVal;\n\t }\n\t });\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tSCHEDULING\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Schedules a parameter value change at the given time.\n\t\t * @param {*}\tvalue The value to set the signal.\n\t\t * @param {Time} time The time when the change should occur.\n\t\t * @returns {Tone.TimelineSignal} this\n\t\t * @example\n\t\t * //set the frequency to \"G4\" in exactly 1 second from now. \n\t\t * freq.setValueAtTime(\"G4\", \"+1\");\n\t\t */\n\t Tone.TimelineSignal.prototype.setValueAtTime = function (value, startTime) {\n\t value = this._fromUnits(value);\n\t startTime = this.toSeconds(startTime);\n\t this._events.add({\n\t 'type': Tone.TimelineSignal.Type.Set,\n\t 'value': value,\n\t 'time': startTime\n\t });\n\t //invoke the original event\n\t this._param.setValueAtTime(value, startTime);\n\t return this;\n\t };\n\t /**\n\t\t * Schedules a linear continuous change in parameter value from the \n\t\t * previous scheduled parameter value to the given value.\n\t\t * \n\t\t * @param {number} value \n\t\t * @param {Time} endTime \n\t\t * @returns {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.linearRampToValueAtTime = function (value, endTime) {\n\t value = this._fromUnits(value);\n\t endTime = this.toSeconds(endTime);\n\t this._events.add({\n\t 'type': Tone.TimelineSignal.Type.Linear,\n\t 'value': value,\n\t 'time': endTime\n\t });\n\t this._param.linearRampToValueAtTime(value, endTime);\n\t return this;\n\t };\n\t /**\n\t\t * Schedules an exponential continuous change in parameter value from \n\t\t * the previous scheduled parameter value to the given value.\n\t\t * \n\t\t * @param {number} value \n\t\t * @param {Time} endTime \n\t\t * @returns {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.exponentialRampToValueAtTime = function (value, endTime) {\n\t //get the previous event and make sure it's not starting from 0\n\t endTime = this.toSeconds(endTime);\n\t var beforeEvent = this._searchBefore(endTime);\n\t if (beforeEvent && beforeEvent.value === 0) {\n\t //reschedule that event\n\t this.setValueAtTime(this._minOutput, beforeEvent.time);\n\t }\n\t value = this._fromUnits(value);\n\t var setValue = Math.max(value, this._minOutput);\n\t this._events.add({\n\t 'type': Tone.TimelineSignal.Type.Exponential,\n\t 'value': setValue,\n\t 'time': endTime\n\t });\n\t //if the ramped to value is 0, make it go to the min output, and then set to 0.\n\t if (value < this._minOutput) {\n\t this._param.exponentialRampToValueAtTime(this._minOutput, endTime - this.sampleTime);\n\t this.setValueAtTime(0, endTime);\n\t } else {\n\t this._param.exponentialRampToValueAtTime(value, endTime);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Start exponentially approaching the target value at the given time with\n\t\t * a rate having the given time constant.\n\t\t * @param {number} value \n\t\t * @param {Time} startTime \n\t\t * @param {number} timeConstant \n\t\t * @returns {Tone.TimelineSignal} this \n\t\t */\n\t Tone.TimelineSignal.prototype.setTargetAtTime = function (value, startTime, timeConstant) {\n\t value = this._fromUnits(value);\n\t value = Math.max(this._minOutput, value);\n\t timeConstant = Math.max(this._minOutput, timeConstant);\n\t startTime = this.toSeconds(startTime);\n\t this._events.add({\n\t 'type': Tone.TimelineSignal.Type.Target,\n\t 'value': value,\n\t 'time': startTime,\n\t 'constant': timeConstant\n\t });\n\t this._param.setTargetAtTime(value, startTime, timeConstant);\n\t return this;\n\t };\n\t /**\n\t\t * Set an array of arbitrary values starting at the given time for the given duration.\n\t\t * @param {Float32Array} values \n\t\t * @param {Time} startTime \n\t\t * @param {Time} duration\n\t\t * @param {NormalRange} [scaling=1] If the values in the curve should be scaled by some value\n\t\t * @returns {Tone.TimelineSignal} this \n\t\t */\n\t Tone.TimelineSignal.prototype.setValueCurveAtTime = function (values, startTime, duration, scaling) {\n\t scaling = this.defaultArg(scaling, 1);\n\t //copy the array\n\t var floats = new Array(values.length);\n\t for (var i = 0; i < floats.length; i++) {\n\t floats[i] = this._fromUnits(values[i]) * scaling;\n\t }\n\t startTime = this.toSeconds(startTime);\n\t duration = this.toSeconds(duration);\n\t this._events.add({\n\t 'type': Tone.TimelineSignal.Type.Curve,\n\t 'value': floats,\n\t 'time': startTime,\n\t 'duration': duration\n\t });\n\t //set the first value\n\t this._param.setValueAtTime(floats[0], startTime);\n\t //schedule a lienar ramp for each of the segments\n\t for (var j = 1; j < floats.length; j++) {\n\t var segmentTime = startTime + j / (floats.length - 1) * duration;\n\t this._param.linearRampToValueAtTime(floats[j], segmentTime);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Cancels all scheduled parameter changes with times greater than or \n\t\t * equal to startTime.\n\t\t * \n\t\t * @param {Time} startTime\n\t\t * @returns {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.cancelScheduledValues = function (after) {\n\t after = this.toSeconds(after);\n\t this._events.cancel(after);\n\t this._param.cancelScheduledValues(after);\n\t return this;\n\t };\n\t /**\n\t\t * Sets the computed value at the given time. This provides\n\t\t * a point from which a linear or exponential curve\n\t\t * can be scheduled after. Will cancel events after \n\t\t * the given time and shorten the currently scheduled\n\t\t * linear or exponential ramp so that it ends at `time` .\n\t\t * This is to avoid discontinuities and clicks in envelopes. \n\t\t * @param {Time} time When to set the ramp point\n\t\t * @returns {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.setRampPoint = function (time) {\n\t time = this.toSeconds(time);\n\t //get the value at the given time\n\t var val = this._toUnits(this.getValueAtTime(time));\n\t //if there is an event at the given time\n\t //and that even is not a \"set\"\n\t var before = this._searchBefore(time);\n\t if (before && before.time === time) {\n\t //remove everything after\n\t this.cancelScheduledValues(time + this.sampleTime);\n\t } else if (before && before.type === Tone.TimelineSignal.Type.Curve && before.time + before.duration > time) {\n\t //if the curve is still playing\n\t //cancel the curve\n\t this.cancelScheduledValues(time);\n\t this.linearRampToValueAtTime(val, time);\n\t } else {\n\t //reschedule the next event to end at the given time\n\t var after = this._searchAfter(time);\n\t if (after) {\n\t //cancel the next event(s)\n\t this.cancelScheduledValues(time);\n\t if (after.type === Tone.TimelineSignal.Type.Linear) {\n\t this.linearRampToValueAtTime(val, time);\n\t } else if (after.type === Tone.TimelineSignal.Type.Exponential) {\n\t this.exponentialRampToValueAtTime(val, time);\n\t }\n\t }\n\t this.setValueAtTime(val, time);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Do a linear ramp to the given value between the start and finish times.\n\t\t * @param {Number} value The value to ramp to.\n\t\t * @param {Time} start The beginning anchor point to do the linear ramp\n\t\t * @param {Time} finish The ending anchor point by which the value of\n\t\t * the signal will equal the given value.\n\t\t * @returns {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.linearRampToValueBetween = function (value, start, finish) {\n\t this.setRampPoint(start);\n\t this.linearRampToValueAtTime(value, finish);\n\t return this;\n\t };\n\t /**\n\t\t * Do a exponential ramp to the given value between the start and finish times.\n\t\t * @param {Number} value The value to ramp to.\n\t\t * @param {Time} start The beginning anchor point to do the exponential ramp\n\t\t * @param {Time} finish The ending anchor point by which the value of\n\t\t * the signal will equal the given value.\n\t\t * @returns {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.exponentialRampToValueBetween = function (value, start, finish) {\n\t this.setRampPoint(start);\n\t this.exponentialRampToValueAtTime(value, finish);\n\t return this;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tGETTING SCHEDULED VALUES\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Returns the value before or equal to the given time\n\t\t * @param {Number} time The time to query\n\t\t * @return {Object} The event at or before the given time.\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.prototype._searchBefore = function (time) {\n\t return this._events.get(time);\n\t };\n\t /**\n\t\t * The event after the given time\n\t\t * @param {Number} time The time to query.\n\t\t * @return {Object} The next event after the given time\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.prototype._searchAfter = function (time) {\n\t return this._events.getAfter(time);\n\t };\n\t /**\n\t\t * Get the scheduled value at the given time. This will\n\t\t * return the unconverted (raw) value.\n\t\t * @param {Number} time The time in seconds.\n\t\t * @return {Number} The scheduled value at the given time.\n\t\t */\n\t Tone.TimelineSignal.prototype.getValueAtTime = function (time) {\n\t time = this.toSeconds(time);\n\t var after = this._searchAfter(time);\n\t var before = this._searchBefore(time);\n\t var value = this._initial;\n\t //if it was set by\n\t if (before === null) {\n\t value = this._initial;\n\t } else if (before.type === Tone.TimelineSignal.Type.Target) {\n\t var previous = this._events.getBefore(before.time);\n\t var previouVal;\n\t if (previous === null) {\n\t previouVal = this._initial;\n\t } else {\n\t previouVal = previous.value;\n\t }\n\t value = this._exponentialApproach(before.time, previouVal, before.value, before.constant, time);\n\t } else if (before.type === Tone.TimelineSignal.Type.Curve) {\n\t value = this._curveInterpolate(before.time, before.value, before.duration, time);\n\t } else if (after === null) {\n\t value = before.value;\n\t } else if (after.type === Tone.TimelineSignal.Type.Linear) {\n\t value = this._linearInterpolate(before.time, before.value, after.time, after.value, time);\n\t } else if (after.type === Tone.TimelineSignal.Type.Exponential) {\n\t value = this._exponentialInterpolate(before.time, before.value, after.time, after.value, time);\n\t } else {\n\t value = before.value;\n\t }\n\t return value;\n\t };\n\t /**\n\t\t * When signals connect to other signals or AudioParams, \n\t\t * they take over the output value of that signal or AudioParam. \n\t\t * For all other nodes, the behavior is the same as a default connect. \n\t\t *\n\t\t * @override\n\t\t * @param {AudioParam|AudioNode|Tone.Signal|Tone} node \n\t\t * @param {number} [outputNumber=0] The output number to connect from.\n\t\t * @param {number} [inputNumber=0] The input number to connect to.\n\t\t * @returns {Tone.TimelineSignal} this\n\t\t * @method\n\t\t */\n\t Tone.TimelineSignal.prototype.connect = Tone.SignalBase.prototype.connect;\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tAUTOMATION CURVE CALCULATIONS\n\t //\tMIT License, copyright (c) 2014 Jordan Santell\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Calculates the the value along the curve produced by setTargetAtTime\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.prototype._exponentialApproach = function (t0, v0, v1, timeConstant, t) {\n\t return v1 + (v0 - v1) * Math.exp(-(t - t0) / timeConstant);\n\t };\n\t /**\n\t\t * Calculates the the value along the curve produced by linearRampToValueAtTime\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.prototype._linearInterpolate = function (t0, v0, t1, v1, t) {\n\t return v0 + (v1 - v0) * ((t - t0) / (t1 - t0));\n\t };\n\t /**\n\t\t * Calculates the the value along the curve produced by exponentialRampToValueAtTime\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.prototype._exponentialInterpolate = function (t0, v0, t1, v1, t) {\n\t v0 = Math.max(this._minOutput, v0);\n\t return v0 * Math.pow(v1 / v0, (t - t0) / (t1 - t0));\n\t };\n\t /**\n\t\t * Calculates the the value along the curve produced by setValueCurveAtTime\n\t\t * @private\n\t\t */\n\t Tone.TimelineSignal.prototype._curveInterpolate = function (start, curve, duration, time) {\n\t var len = curve.length;\n\t // If time is after duration, return the last curve value\n\t if (time >= start + duration) {\n\t return curve[len - 1];\n\t } else if (time <= start) {\n\t return curve[0];\n\t } else {\n\t var progress = (time - start) / duration;\n\t var lowerIndex = Math.floor((len - 1) * progress);\n\t var upperIndex = Math.ceil((len - 1) * progress);\n\t var lowerVal = curve[lowerIndex];\n\t var upperVal = curve[upperIndex];\n\t if (upperIndex === lowerIndex) {\n\t return lowerVal;\n\t } else {\n\t return this._linearInterpolate(lowerIndex, lowerVal, upperIndex, upperVal, progress * (len - 1));\n\t }\n\t }\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.TimelineSignal} this\n\t\t */\n\t Tone.TimelineSignal.prototype.dispose = function () {\n\t Tone.Signal.prototype.dispose.call(this);\n\t Tone.Param.prototype.dispose.call(this);\n\t this._events.dispose();\n\t this._events = null;\n\t };\n\t return Tone.TimelineSignal;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Pow applies an exponent to the incoming signal. The incoming signal\n\t\t * must be AudioRange.\n\t\t *\n\t\t * @extends {Tone.SignalBase}\n\t\t * @constructor\n\t\t * @param {Positive} exp The exponent to apply to the incoming signal, must be at least 2. \n\t\t * @example\n\t\t * var pow = new Tone.Pow(2);\n\t\t * var sig = new Tone.Signal(0.5).connect(pow);\n\t\t * //output of pow is 0.25. \n\t\t */\n\t Tone.Pow = function (exp) {\n\t /**\n\t\t\t * the exponent\n\t\t\t * @private\n\t\t\t * @type {number}\n\t\t\t */\n\t this._exp = this.defaultArg(exp, 1);\n\t /**\n\t\t\t * @type {WaveShaperNode}\n\t\t\t * @private\n\t\t\t */\n\t this._expScaler = this.input = this.output = new Tone.WaveShaper(this._expFunc(this._exp), 8192);\n\t };\n\t Tone.extend(Tone.Pow, Tone.SignalBase);\n\t /**\n\t\t * The value of the exponent.\n\t\t * @memberOf Tone.Pow#\n\t\t * @type {number}\n\t\t * @name value\n\t\t */\n\t Object.defineProperty(Tone.Pow.prototype, 'value', {\n\t get: function () {\n\t return this._exp;\n\t },\n\t set: function (exp) {\n\t this._exp = exp;\n\t this._expScaler.setMap(this._expFunc(this._exp));\n\t }\n\t });\n\t /**\n\t\t * the function which maps the waveshaper\n\t\t * @param {number} exp\n\t\t * @return {function}\n\t\t * @private\n\t\t */\n\t Tone.Pow.prototype._expFunc = function (exp) {\n\t return function (val) {\n\t return Math.pow(Math.abs(val), exp);\n\t };\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Pow} this\n\t\t */\n\t Tone.Pow.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._expScaler.dispose();\n\t this._expScaler = null;\n\t return this;\n\t };\n\t return Tone.Pow;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Envelope is an [ADSR](https://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope)\n\t\t * envelope generator. Tone.Envelope outputs a signal which \n\t\t * can be connected to an AudioParam or Tone.Signal. \n\t\t * input[0]\n\t\t * and input[1]. If a value is passed into the constructor, \n\t\t * the it will be added to the input.\n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone.Signal}\n\t\t * @param {number=} value If no value is provided, Tone.Add will sum the first\n\t\t * and second inputs. \n\t\t * @example\n\t\t * var signal = new Tone.Signal(2);\n\t\t * var add = new Tone.Add(2);\n\t\t * signal.connect(add);\n\t\t * //the output of add equals 4\n\t\t * @example\n\t\t * //if constructed with no arguments\n\t\t * //it will add the first and second inputs\n\t\t * var add = new Tone.Add();\n\t\t * var sig0 = new Tone.Signal(3).connect(add, 0, 0);\n\t\t * var sig1 = new Tone.Signal(4).connect(add, 0, 1);\n\t\t * //the output of add equals 7. \n\t\t */\n\t Tone.Add = function (value) {\n\t this.createInsOuts(2, 0);\n\t /**\n\t\t\t * the summing node\n\t\t\t * @type {GainNode}\n\t\t\t * @private\n\t\t\t */\n\t this._sum = this.input[0] = this.input[1] = this.output = new Tone.Gain();\n\t /**\n\t\t\t * @private\n\t\t\t * @type {Tone.Signal}\n\t\t\t */\n\t this._param = this.input[1] = new Tone.Signal(value);\n\t this._param.connect(this._sum);\n\t };\n\t Tone.extend(Tone.Add, Tone.Signal);\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Add} this\n\t\t */\n\t Tone.Add.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._sum.dispose();\n\t this._sum = null;\n\t this._param.dispose();\n\t this._param = null;\n\t return this;\n\t };\n\t return Tone.Add;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Multiply two incoming signals. Or, if a number is given in the constructor, \n\t\t * multiplies the incoming signal by that value. \n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.Signal}\n\t\t * @param {number=} value Constant value to multiple. If no value is provided,\n\t\t * it will return the product of the first and second inputs\n\t\t * @example\n\t\t * var mult = new Tone.Multiply();\n\t\t * var sigA = new Tone.Signal(3);\n\t\t * var sigB = new Tone.Signal(4);\n\t\t * sigA.connect(mult, 0, 0);\n\t\t * sigB.connect(mult, 0, 1);\n\t\t * //output of mult is 12.\n\t\t * @example\n\t\t * var mult = new Tone.Multiply(10);\n\t\t * var sig = new Tone.Signal(2).connect(mult);\n\t\t * //the output of mult is 20. \n\t\t */\n\t Tone.Multiply = function (value) {\n\t this.createInsOuts(2, 0);\n\t /**\n\t\t\t * the input node is the same as the output node\n\t\t\t * it is also the GainNode which handles the scaling of incoming signal\n\t\t\t * \n\t\t\t * @type {GainNode}\n\t\t\t * @private\n\t\t\t */\n\t this._mult = this.input[0] = this.output = new Tone.Gain();\n\t /**\n\t\t\t * the scaling parameter\n\t\t\t * @type {AudioParam}\n\t\t\t * @private\n\t\t\t */\n\t this._param = this.input[1] = this.output.gain;\n\t this._param.value = this.defaultArg(value, 0);\n\t };\n\t Tone.extend(Tone.Multiply, Tone.Signal);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.Multiply} this\n\t\t */\n\t Tone.Multiply.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._mult.dispose();\n\t this._mult = null;\n\t this._param = null;\n\t return this;\n\t };\n\t return Tone.Multiply;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Negate the incoming signal. i.e. an input signal of 10 will output -10\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.SignalBase}\n\t\t * @example\n\t\t * var neg = new Tone.Negate();\n\t\t * var sig = new Tone.Signal(-2).connect(neg);\n\t\t * //output of neg is positive 2. \n\t\t */\n\t Tone.Negate = function () {\n\t /**\n\t\t\t * negation is done by multiplying by -1\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._multiply = this.input = this.output = new Tone.Multiply(-1);\n\t };\n\t Tone.extend(Tone.Negate, Tone.SignalBase);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.Negate} this\n\t\t */\n\t Tone.Negate.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._multiply.dispose();\n\t this._multiply = null;\n\t return this;\n\t };\n\t return Tone.Negate;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Subtract the signal connected to input[1] from the signal connected \n\t\t * to input[0]. If an argument is provided in the constructor, the \n\t\t * signals .value will be subtracted from the incoming signal.\n\t\t *\n\t\t * @extends {Tone.Signal}\n\t\t * @constructor\n\t\t * @param {number=} value The value to subtract from the incoming signal. If the value\n\t\t * is omitted, it will subtract the second signal from the first.\n\t\t * @example\n\t\t * var sub = new Tone.Subtract(1);\n\t\t * var sig = new Tone.Signal(4).connect(sub);\n\t\t * //the output of sub is 3. \n\t\t * @example\n\t\t * var sub = new Tone.Subtract();\n\t\t * var sigA = new Tone.Signal(10);\n\t\t * var sigB = new Tone.Signal(2.5);\n\t\t * sigA.connect(sub, 0, 0);\n\t\t * sigB.connect(sub, 0, 1);\n\t\t * //output of sub is 7.5\n\t\t */\n\t Tone.Subtract = function (value) {\n\t this.createInsOuts(2, 0);\n\t /**\n\t\t\t * the summing node\n\t\t\t * @type {GainNode}\n\t\t\t * @private\n\t\t\t */\n\t this._sum = this.input[0] = this.output = new Tone.Gain();\n\t /**\n\t\t\t * negate the input of the second input before connecting it\n\t\t\t * to the summing node.\n\t\t\t * @type {Tone.Negate}\n\t\t\t * @private\n\t\t\t */\n\t this._neg = new Tone.Negate();\n\t /**\n\t\t\t * the node where the value is set\n\t\t\t * @private\n\t\t\t * @type {Tone.Signal}\n\t\t\t */\n\t this._param = this.input[1] = new Tone.Signal(value);\n\t this._param.chain(this._neg, this._sum);\n\t };\n\t Tone.extend(Tone.Subtract, Tone.Signal);\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.SignalBase} this\n\t\t */\n\t Tone.Subtract.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._neg.dispose();\n\t this._neg = null;\n\t this._sum.disconnect();\n\t this._sum = null;\n\t this._param.dispose();\n\t this._param = null;\n\t return this;\n\t };\n\t return Tone.Subtract;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class GreaterThanZero outputs 1 when the input is strictly greater than zero\n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone.SignalBase}\n\t\t * @example\n\t\t * var gt0 = new Tone.GreaterThanZero();\n\t\t * var sig = new Tone.Signal(0.01).connect(gt0);\n\t\t * //the output of gt0 is 1. \n\t\t * sig.value = 0;\n\t\t * //the output of gt0 is 0. \n\t\t */\n\t Tone.GreaterThanZero = function () {\n\t /**\n\t\t\t * @type {Tone.WaveShaper}\n\t\t\t * @private\n\t\t\t */\n\t this._thresh = this.output = new Tone.WaveShaper(function (val) {\n\t if (val <= 0) {\n\t return 0;\n\t } else {\n\t return 1;\n\t }\n\t }, 127);\n\t /**\n\t\t\t * scale the first thresholded signal by a large value.\n\t\t\t * this will help with values which are very close to 0\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._scale = this.input = new Tone.Multiply(10000);\n\t //connections\n\t this._scale.connect(this._thresh);\n\t };\n\t Tone.extend(Tone.GreaterThanZero, Tone.SignalBase);\n\t /**\n\t\t * dispose method\n\t\t * @returns {Tone.GreaterThanZero} this\n\t\t */\n\t Tone.GreaterThanZero.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._scale.dispose();\n\t this._scale = null;\n\t this._thresh.dispose();\n\t this._thresh = null;\n\t return this;\n\t };\n\t return Tone.GreaterThanZero;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Output 1 if the signal is greater than the value, otherwise outputs 0.\n\t\t * can compare two signals or a signal and a number. \n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone.Signal}\n\t\t * @param {number} [value=0] the value to compare to the incoming signal\n\t\t * @example\n\t\t * var gt = new Tone.GreaterThan(2);\n\t\t * var sig = new Tone.Signal(4).connect(gt);\n\t\t * //output of gt is equal 1. \n\t\t */\n\t Tone.GreaterThan = function (value) {\n\t this.createInsOuts(2, 0);\n\t /**\n\t\t\t * subtract the amount from the incoming signal\n\t\t\t * @type {Tone.Subtract}\n\t\t\t * @private\n\t\t\t */\n\t this._param = this.input[0] = new Tone.Subtract(value);\n\t this.input[1] = this._param.input[1];\n\t /**\n\t\t\t * compare that amount to zero\n\t\t\t * @type {Tone.GreaterThanZero}\n\t\t\t * @private\n\t\t\t */\n\t this._gtz = this.output = new Tone.GreaterThanZero();\n\t //connect\n\t this._param.connect(this._gtz);\n\t };\n\t Tone.extend(Tone.GreaterThan, Tone.Signal);\n\t /**\n\t\t * dispose method\n\t\t * @returns {Tone.GreaterThan} this\n\t\t */\n\t Tone.GreaterThan.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._param.dispose();\n\t this._param = null;\n\t this._gtz.dispose();\n\t this._gtz = null;\n\t return this;\n\t };\n\t return Tone.GreaterThan;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Return the absolute value of an incoming signal. \n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone.SignalBase}\n\t\t * @example\n\t\t * var signal = new Tone.Signal(-1);\n\t\t * var abs = new Tone.Abs();\n\t\t * signal.connect(abs);\n\t\t * //the output of abs is 1. \n\t\t */\n\t Tone.Abs = function () {\n\t /**\n\t\t\t * @type {Tone.LessThan}\n\t\t\t * @private\n\t\t\t */\n\t this._abs = this.input = this.output = new Tone.WaveShaper(function (val) {\n\t if (val === 0) {\n\t return 0;\n\t } else {\n\t return Math.abs(val);\n\t }\n\t }, 127);\n\t };\n\t Tone.extend(Tone.Abs, Tone.SignalBase);\n\t /**\n\t\t * dispose method\n\t\t * @returns {Tone.Abs} this\n\t\t */\n\t Tone.Abs.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._abs.dispose();\n\t this._abs = null;\n\t return this;\n\t };\n\t return Tone.Abs;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Signal-rate modulo operator. Only works in AudioRange [-1, 1] and for modulus\n\t\t * values in the NormalRange. \n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.SignalBase}\n\t\t * @param {NormalRange} modulus The modulus to apply.\n\t\t * @example\n\t\t * var mod = new Tone.Modulo(0.2)\n\t\t * var sig = new Tone.Signal(0.5).connect(mod);\n\t\t * //mod outputs 0.1\n\t\t */\n\t Tone.Modulo = function (modulus) {\n\t this.createInsOuts(1, 0);\n\t /**\n\t\t\t * A waveshaper gets the integer multiple of \n\t\t\t * the input signal and the modulus.\n\t\t\t * @private\n\t\t\t * @type {Tone.WaveShaper}\n\t\t\t */\n\t this._shaper = new Tone.WaveShaper(Math.pow(2, 16));\n\t /**\n\t\t\t * the integer multiple is multiplied by the modulus\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._multiply = new Tone.Multiply();\n\t /**\n\t\t\t * and subtracted from the input signal\n\t\t\t * @type {Tone.Subtract}\n\t\t\t * @private\n\t\t\t */\n\t this._subtract = this.output = new Tone.Subtract();\n\t /**\n\t\t\t * the modulus signal\n\t\t\t * @type {Tone.Signal}\n\t\t\t * @private\n\t\t\t */\n\t this._modSignal = new Tone.Signal(modulus);\n\t //connections\n\t this.input.fan(this._shaper, this._subtract);\n\t this._modSignal.connect(this._multiply, 0, 0);\n\t this._shaper.connect(this._multiply, 0, 1);\n\t this._multiply.connect(this._subtract, 0, 1);\n\t this._setWaveShaper(modulus);\n\t };\n\t Tone.extend(Tone.Modulo, Tone.SignalBase);\n\t /**\n\t\t * @param {number} mod the modulus to apply\n\t\t * @private\n\t\t */\n\t Tone.Modulo.prototype._setWaveShaper = function (mod) {\n\t this._shaper.setMap(function (val) {\n\t var multiple = Math.floor((val + 0.0001) / mod);\n\t return multiple;\n\t });\n\t };\n\t /**\n\t\t * The modulus value.\n\t\t * @memberOf Tone.Modulo#\n\t\t * @type {NormalRange}\n\t\t * @name value\n\t\t */\n\t Object.defineProperty(Tone.Modulo.prototype, 'value', {\n\t get: function () {\n\t return this._modSignal.value;\n\t },\n\t set: function (mod) {\n\t this._modSignal.value = mod;\n\t this._setWaveShaper(mod);\n\t }\n\t });\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.Modulo} this\n\t\t */\n\t Tone.Modulo.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._shaper.dispose();\n\t this._shaper = null;\n\t this._multiply.dispose();\n\t this._multiply = null;\n\t this._subtract.dispose();\n\t this._subtract = null;\n\t this._modSignal.dispose();\n\t this._modSignal = null;\n\t return this;\n\t };\n\t return Tone.Modulo;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class AudioToGain converts an input in AudioRange [-1,1] to NormalRange [0,1]. \n\t\t * See Tone.GainToAudio.\n\t\t *\n\t\t * @extends {Tone.SignalBase}\n\t\t * @constructor\n\t\t * @example\n\t\t * var a2g = new Tone.AudioToGain();\n\t\t */\n\t Tone.AudioToGain = function () {\n\t /**\n\t\t\t * @type {WaveShaperNode}\n\t\t\t * @private\n\t\t\t */\n\t this._norm = this.input = this.output = new Tone.WaveShaper(function (x) {\n\t return (x + 1) / 2;\n\t });\n\t };\n\t Tone.extend(Tone.AudioToGain, Tone.SignalBase);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.AudioToGain} this\n\t\t */\n\t Tone.AudioToGain.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._norm.dispose();\n\t this._norm = null;\n\t return this;\n\t };\n\t return Tone.AudioToGain;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Evaluate an expression at audio rate. input[0]. \n\t\t\t * @type {Tone.Gain}\n\t\t\t */\n\t this.a = this.input[0] = new Tone.Gain();\n\t /**\n\t\t\t * Alias for input[1]. \n\t\t\t * @type {Tone.Gain}\n\t\t\t */\n\t this.b = this.input[1] = new Tone.Gain();\n\t /**\n\t\t\t * \tThe mix between the two inputs. A fade value of 0\n\t\t\t * \twill output 100% input[0] and \n\t\t\t * \ta value of 1 will output 100% input[1]. \n\t\t\t * @type {NormalRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.fade = new Tone.Signal(this.defaultArg(initialFade, 0.5), Tone.Type.NormalRange);\n\t /**\n\t\t\t * equal power gain cross fade\n\t\t\t * @private\n\t\t\t * @type {Tone.EqualPowerGain}\n\t\t\t */\n\t this._equalPowerA = new Tone.EqualPowerGain();\n\t /**\n\t\t\t * equal power gain cross fade\n\t\t\t * @private\n\t\t\t * @type {Tone.EqualPowerGain}\n\t\t\t */\n\t this._equalPowerB = new Tone.EqualPowerGain();\n\t /**\n\t\t\t * invert the incoming signal\n\t\t\t * @private\n\t\t\t * @type {Tone}\n\t\t\t */\n\t this._invert = new Tone.Expr('1 - $0');\n\t //connections\n\t this.a.connect(this.output);\n\t this.b.connect(this.output);\n\t this.fade.chain(this._equalPowerB, this.b.gain);\n\t this.fade.chain(this._invert, this._equalPowerA, this.a.gain);\n\t this._readOnly('fade');\n\t };\n\t Tone.extend(Tone.CrossFade);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.CrossFade} this\n\t\t */\n\t Tone.CrossFade.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable('fade');\n\t this._equalPowerA.dispose();\n\t this._equalPowerA = null;\n\t this._equalPowerB.dispose();\n\t this._equalPowerB = null;\n\t this.fade.dispose();\n\t this.fade = null;\n\t this._invert.dispose();\n\t this._invert = null;\n\t this.a.dispose();\n\t this.a = null;\n\t this.b.dispose();\n\t this.b = null;\n\t return this;\n\t };\n\t return Tone.CrossFade;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Filter is a filter which allows for all of the same native methods\n\t\t * as the [BiquadFilterNode](http://webaudio.github.io/web-audio-api/#the-biquadfilternode-interface). \n\t\t * Tone.Filter has the added ability to set the filter rolloff at -12 \n\t\t * (default), -24 and -48. \n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @param {Frequency|Object} [frequency] The cutoff frequency of the filter.\n\t\t * @param {string=} type The type of filter.\n\t\t * @param {number=} rolloff The drop in decibels per octave after the cutoff frequency.\n\t\t * 3 choices: -12, -24, and -48\n\t\t * @example\n\t\t * var filter = new Tone.Filter(200, \"highpass\");\n\t\t */\n\t Tone.Filter = function () {\n\t this.createInsOuts(1, 1);\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'type',\n\t 'rolloff'\n\t ], Tone.Filter.defaults);\n\t /**\n\t\t\t * the filter(s)\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._filters = [];\n\t /**\n\t\t\t * The cutoff frequency of the filter. \n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The detune parameter\n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = new Tone.Signal(0, Tone.Type.Cents);\n\t /**\n\t\t\t * The gain of the filter, only used in certain filter types\n\t\t\t * @type {Number}\n\t\t\t * @signal\n\t\t\t */\n\t this.gain = new Tone.Signal({\n\t 'value': options.gain,\n\t 'convert': false\n\t });\n\t /**\n\t\t\t * The Q or Quality of the filter\n\t\t\t * @type {Positive}\n\t\t\t * @signal\n\t\t\t */\n\t this.Q = new Tone.Signal(options.Q);\n\t /**\n\t\t\t * the type of the filter\n\t\t\t * @type {string}\n\t\t\t * @private\n\t\t\t */\n\t this._type = options.type;\n\t /**\n\t\t\t * the rolloff value of the filter\n\t\t\t * @type {number}\n\t\t\t * @private\n\t\t\t */\n\t this._rolloff = options.rolloff;\n\t //set the rolloff;\n\t this.rolloff = options.rolloff;\n\t this._readOnly([\n\t 'detune',\n\t 'frequency',\n\t 'gain',\n\t 'Q'\n\t ]);\n\t };\n\t Tone.extend(Tone.Filter);\n\t /**\n\t\t * the default parameters\n\t\t *\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.Filter.defaults = {\n\t 'type': 'lowpass',\n\t 'frequency': 350,\n\t 'rolloff': -12,\n\t 'Q': 1,\n\t 'gain': 0\n\t };\n\t /**\n\t\t * The type of the filter. Types: \"lowpass\", \"highpass\", \n\t\t * \"bandpass\", \"lowshelf\", \"highshelf\", \"notch\", \"allpass\", or \"peaking\". \n\t\t * @memberOf Tone.Filter#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.Filter.prototype, 'type', {\n\t get: function () {\n\t return this._type;\n\t },\n\t set: function (type) {\n\t var types = [\n\t 'lowpass',\n\t 'highpass',\n\t 'bandpass',\n\t 'lowshelf',\n\t 'highshelf',\n\t 'notch',\n\t 'allpass',\n\t 'peaking'\n\t ];\n\t if (types.indexOf(type) === -1) {\n\t throw new TypeError('Tone.Filter: invalid type ' + type);\n\t }\n\t this._type = type;\n\t for (var i = 0; i < this._filters.length; i++) {\n\t this._filters[i].type = type;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The rolloff of the filter which is the drop in db\n\t\t * per octave. Implemented internally by cascading filters.\n\t\t * Only accepts the values -12, -24, -48 and -96.\n\t\t * @memberOf Tone.Filter#\n\t\t * @type {number}\n\t\t * @name rolloff\n\t\t */\n\t Object.defineProperty(Tone.Filter.prototype, 'rolloff', {\n\t get: function () {\n\t return this._rolloff;\n\t },\n\t set: function (rolloff) {\n\t rolloff = parseInt(rolloff, 10);\n\t var possibilities = [\n\t -12,\n\t -24,\n\t -48,\n\t -96\n\t ];\n\t var cascadingCount = possibilities.indexOf(rolloff);\n\t //check the rolloff is valid\n\t if (cascadingCount === -1) {\n\t throw new RangeError('Tone.Filter: rolloff can only be -12, -24, -48 or -96');\n\t }\n\t cascadingCount += 1;\n\t this._rolloff = rolloff;\n\t //first disconnect the filters and throw them away\n\t this.input.disconnect();\n\t for (var i = 0; i < this._filters.length; i++) {\n\t this._filters[i].disconnect();\n\t this._filters[i] = null;\n\t }\n\t this._filters = new Array(cascadingCount);\n\t for (var count = 0; count < cascadingCount; count++) {\n\t var filter = this.context.createBiquadFilter();\n\t filter.type = this._type;\n\t this.frequency.connect(filter.frequency);\n\t this.detune.connect(filter.detune);\n\t this.Q.connect(filter.Q);\n\t this.gain.connect(filter.gain);\n\t this._filters[count] = filter;\n\t }\n\t //connect them up\n\t var connectionChain = [this.input].concat(this._filters).concat([this.output]);\n\t this.connectSeries.apply(this, connectionChain);\n\t }\n\t });\n\t /**\n\t\t * Clean up. \n\t\t * @return {Tone.Filter} this\n\t\t */\n\t Tone.Filter.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t for (var i = 0; i < this._filters.length; i++) {\n\t this._filters[i].disconnect();\n\t this._filters[i] = null;\n\t }\n\t this._filters = null;\n\t this._writable([\n\t 'detune',\n\t 'frequency',\n\t 'gain',\n\t 'Q'\n\t ]);\n\t this.frequency.dispose();\n\t this.Q.dispose();\n\t this.frequency = null;\n\t this.Q = null;\n\t this.detune.dispose();\n\t this.detune = null;\n\t this.gain.dispose();\n\t this.gain = null;\n\t return this;\n\t };\n\t return Tone.Filter;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Split the incoming signal into three bands (low, mid, high)\n\t\t * with two crossover frequency controls. \n\t\t *\n\t\t * @extends {Tone}\n\t\t * @constructor\n\t\t * @param {Frequency|Object} [lowFrequency] the low/mid crossover frequency\n\t\t * @param {Frequency} [highFrequency] the mid/high crossover frequency\n\t\t */\n\t Tone.MultibandSplit = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'lowFrequency',\n\t 'highFrequency'\n\t ], Tone.MultibandSplit.defaults);\n\t /**\n\t\t\t * the input\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this.input = new Tone.Gain();\n\t /**\n\t\t\t * the outputs\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this.output = new Array(3);\n\t /**\n\t\t\t * The low band. Alias for output[0]\n\t\t\t * @type {Tone.Filter}\n\t\t\t */\n\t this.low = this.output[0] = new Tone.Filter(0, 'lowpass');\n\t /**\n\t\t\t * the lower filter of the mid band\n\t\t\t * @type {Tone.Filter}\n\t\t\t * @private\n\t\t\t */\n\t this._lowMidFilter = new Tone.Filter(0, 'highpass');\n\t /**\n\t\t\t * The mid band output. Alias for output[1]\n\t\t\t * @type {Tone.Filter}\n\t\t\t */\n\t this.mid = this.output[1] = new Tone.Filter(0, 'lowpass');\n\t /**\n\t\t\t * The high band output. Alias for output[2]\n\t\t\t * @type {Tone.Filter}\n\t\t\t */\n\t this.high = this.output[2] = new Tone.Filter(0, 'highpass');\n\t /**\n\t\t\t * The low/mid crossover frequency.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.lowFrequency = new Tone.Signal(options.lowFrequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The mid/high crossover frequency.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.highFrequency = new Tone.Signal(options.highFrequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The quality of all the filters\n\t\t\t * @type {Number}\n\t\t\t * @signal\n\t\t\t */\n\t this.Q = new Tone.Signal(options.Q);\n\t this.input.fan(this.low, this.high);\n\t this.input.chain(this._lowMidFilter, this.mid);\n\t //the frequency control signal\n\t this.lowFrequency.connect(this.low.frequency);\n\t this.lowFrequency.connect(this._lowMidFilter.frequency);\n\t this.highFrequency.connect(this.mid.frequency);\n\t this.highFrequency.connect(this.high.frequency);\n\t //the Q value\n\t this.Q.connect(this.low.Q);\n\t this.Q.connect(this._lowMidFilter.Q);\n\t this.Q.connect(this.mid.Q);\n\t this.Q.connect(this.high.Q);\n\t this._readOnly([\n\t 'high',\n\t 'mid',\n\t 'low',\n\t 'highFrequency',\n\t 'lowFrequency'\n\t ]);\n\t };\n\t Tone.extend(Tone.MultibandSplit);\n\t /**\n\t\t * @private\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.MultibandSplit.defaults = {\n\t 'lowFrequency': 400,\n\t 'highFrequency': 2500,\n\t 'Q': 1\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.MultibandSplit} this\n\t\t */\n\t Tone.MultibandSplit.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable([\n\t 'high',\n\t 'mid',\n\t 'low',\n\t 'highFrequency',\n\t 'lowFrequency'\n\t ]);\n\t this.low.dispose();\n\t this.low = null;\n\t this._lowMidFilter.dispose();\n\t this._lowMidFilter = null;\n\t this.mid.dispose();\n\t this.mid = null;\n\t this.high.dispose();\n\t this.high = null;\n\t this.lowFrequency.dispose();\n\t this.lowFrequency = null;\n\t this.highFrequency.dispose();\n\t this.highFrequency = null;\n\t this.Q.dispose();\n\t this.Q = null;\n\t return this;\n\t };\n\t return Tone.MultibandSplit;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.EQ3 is a three band EQ with control over low, mid, and high gain as\n\t\t * well as the low and high crossover frequencies.\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * \n\t\t * @param {Decibels|Object} [lowLevel] The gain applied to the lows.\n\t\t * @param {Decibels} [midLevel] The gain applied to the mid.\n\t\t * @param {Decibels} [highLevel] The gain applied to the high.\n\t\t * @example\n\t\t * var eq = new Tone.EQ3(-10, 3, -20);\n\t\t */\n\t Tone.EQ3 = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'low',\n\t 'mid',\n\t 'high'\n\t ], Tone.EQ3.defaults);\n\t /**\n\t\t\t * the output node\n\t\t\t * @type {GainNode}\n\t\t\t * @private\n\t\t\t */\n\t this.output = new Tone.Gain();\n\t /**\n\t\t\t * the multiband split\n\t\t\t * @type {Tone.MultibandSplit}\n\t\t\t * @private\n\t\t\t */\n\t this._multibandSplit = this.input = new Tone.MultibandSplit({\n\t 'lowFrequency': options.lowFrequency,\n\t 'highFrequency': options.highFrequency\n\t });\n\t /**\n\t\t\t * The gain for the lower signals\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._lowGain = new Tone.Gain(options.low, Tone.Type.Decibels);\n\t /**\n\t\t\t * The gain for the mid signals\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._midGain = new Tone.Gain(options.mid, Tone.Type.Decibels);\n\t /**\n\t\t\t * The gain in decibels of the high part\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._highGain = new Tone.Gain(options.high, Tone.Type.Decibels);\n\t /**\n\t\t\t * The gain in decibels of the low part\n\t\t\t * @type {Decibels}\n\t\t\t * @signal\n\t\t\t */\n\t this.low = this._lowGain.gain;\n\t /**\n\t\t\t * The gain in decibels of the mid part\n\t\t\t * @type {Decibels}\n\t\t\t * @signal\n\t\t\t */\n\t this.mid = this._midGain.gain;\n\t /**\n\t\t\t * The gain in decibels of the high part\n\t\t\t * @type {Decibels}\n\t\t\t * @signal\n\t\t\t */\n\t this.high = this._highGain.gain;\n\t /**\n\t\t\t * The Q value for all of the filters. \n\t\t\t * @type {Positive}\n\t\t\t * @signal\n\t\t\t */\n\t this.Q = this._multibandSplit.Q;\n\t /**\n\t\t\t * The low/mid crossover frequency. \n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.lowFrequency = this._multibandSplit.lowFrequency;\n\t /**\n\t\t\t * The mid/high crossover frequency. \n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.highFrequency = this._multibandSplit.highFrequency;\n\t //the frequency bands\n\t this._multibandSplit.low.chain(this._lowGain, this.output);\n\t this._multibandSplit.mid.chain(this._midGain, this.output);\n\t this._multibandSplit.high.chain(this._highGain, this.output);\n\t this._readOnly([\n\t 'low',\n\t 'mid',\n\t 'high',\n\t 'lowFrequency',\n\t 'highFrequency'\n\t ]);\n\t };\n\t Tone.extend(Tone.EQ3);\n\t /**\n\t\t * the default values\n\t\t */\n\t Tone.EQ3.defaults = {\n\t 'low': 0,\n\t 'mid': 0,\n\t 'high': 0,\n\t 'lowFrequency': 400,\n\t 'highFrequency': 2500\n\t };\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.EQ3} this\n\t\t */\n\t Tone.EQ3.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable([\n\t 'low',\n\t 'mid',\n\t 'high',\n\t 'lowFrequency',\n\t 'highFrequency'\n\t ]);\n\t this._multibandSplit.dispose();\n\t this._multibandSplit = null;\n\t this.lowFrequency = null;\n\t this.highFrequency = null;\n\t this._lowGain.dispose();\n\t this._lowGain = null;\n\t this._midGain.dispose();\n\t this._midGain = null;\n\t this._highGain.dispose();\n\t this._highGain = null;\n\t this.low = null;\n\t this.mid = null;\n\t this.high = null;\n\t this.Q = null;\n\t return this;\n\t };\n\t return Tone.EQ3;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Performs a linear scaling on an input signal.\n\t\t * Scales a NormalRange input to between\n\t\t * outputMin and outputMax.\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.SignalBase}\n\t\t * @param {number} [outputMin=0] The output value when the input is 0. \n\t\t * @param {number} [outputMax=1]\tThe output value when the input is 1. \n\t\t * @example\n\t\t * var scale = new Tone.Scale(50, 100);\n\t\t * var signal = new Tone.Signal(0.5).connect(scale);\n\t\t * //the output of scale equals 75\n\t\t */\n\t Tone.Scale = function (outputMin, outputMax) {\n\t /** \n\t\t\t * @private\n\t\t\t * @type {number}\n\t\t\t */\n\t this._outputMin = this.defaultArg(outputMin, 0);\n\t /** \n\t\t\t * @private\n\t\t\t * @type {number}\n\t\t\t */\n\t this._outputMax = this.defaultArg(outputMax, 1);\n\t /** \n\t\t\t * @private\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._scale = this.input = new Tone.Multiply(1);\n\t /** \n\t\t\t * @private\n\t\t\t * @type {Tone.Add}\n\t\t\t * @private\n\t\t\t */\n\t this._add = this.output = new Tone.Add(0);\n\t this._scale.connect(this._add);\n\t this._setRange();\n\t };\n\t Tone.extend(Tone.Scale, Tone.SignalBase);\n\t /**\n\t\t * The minimum output value. This number is output when \n\t\t * the value input value is 0. \n\t\t * @memberOf Tone.Scale#\n\t\t * @type {number}\n\t\t * @name min\n\t\t */\n\t Object.defineProperty(Tone.Scale.prototype, 'min', {\n\t get: function () {\n\t return this._outputMin;\n\t },\n\t set: function (min) {\n\t this._outputMin = min;\n\t this._setRange();\n\t }\n\t });\n\t /**\n\t\t * The maximum output value. This number is output when \n\t\t * the value input value is 1. \n\t\t * @memberOf Tone.Scale#\n\t\t * @type {number}\n\t\t * @name max\n\t\t */\n\t Object.defineProperty(Tone.Scale.prototype, 'max', {\n\t get: function () {\n\t return this._outputMax;\n\t },\n\t set: function (max) {\n\t this._outputMax = max;\n\t this._setRange();\n\t }\n\t });\n\t /**\n\t\t * set the values\n\t\t * @private\n\t\t */\n\t Tone.Scale.prototype._setRange = function () {\n\t this._add.value = this._outputMin;\n\t this._scale.value = this._outputMax - this._outputMin;\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Scale} this\n\t\t */\n\t Tone.Scale.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._add.dispose();\n\t this._add = null;\n\t this._scale.dispose();\n\t this._scale = null;\n\t return this;\n\t };\n\t return Tone.Scale;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Performs an exponential scaling on an input signal.\n\t\t * Scales a NormalRange value [0,1] exponentially\n\t\t * to the output range of outputMin to outputMax.\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.SignalBase}\n\t\t * @param {number} [outputMin=0] The output value when the input is 0. \n\t\t * @param {number} [outputMax=1]\tThe output value when the input is 1. \n\t\t * @param {number} [exponent=2] The exponent which scales the incoming signal.\n\t\t * @example\n\t\t * var scaleExp = new Tone.ScaleExp(0, 100, 2);\n\t\t * var signal = new Tone.Signal(0.5).connect(scaleExp);\n\t\t */\n\t Tone.ScaleExp = function (outputMin, outputMax, exponent) {\n\t /**\n\t\t\t * scale the input to the output range\n\t\t\t * @type {Tone.Scale}\n\t\t\t * @private\n\t\t\t */\n\t this._scale = this.output = new Tone.Scale(outputMin, outputMax);\n\t /**\n\t\t\t * @private\n\t\t\t * @type {Tone.Pow}\n\t\t\t * @private\n\t\t\t */\n\t this._exp = this.input = new Tone.Pow(this.defaultArg(exponent, 2));\n\t this._exp.connect(this._scale);\n\t };\n\t Tone.extend(Tone.ScaleExp, Tone.SignalBase);\n\t /**\n\t\t * Instead of interpolating linearly between the min and \n\t\t * max values, setting the exponent will interpolate between\n\t\t * the two values with an exponential curve. \n\t\t * @memberOf Tone.ScaleExp#\n\t\t * @type {number}\n\t\t * @name exponent\n\t\t */\n\t Object.defineProperty(Tone.ScaleExp.prototype, 'exponent', {\n\t get: function () {\n\t return this._exp.value;\n\t },\n\t set: function (exp) {\n\t this._exp.value = exp;\n\t }\n\t });\n\t /**\n\t\t * The minimum output value. This number is output when \n\t\t * the value input value is 0. \n\t\t * @memberOf Tone.ScaleExp#\n\t\t * @type {number}\n\t\t * @name min\n\t\t */\n\t Object.defineProperty(Tone.ScaleExp.prototype, 'min', {\n\t get: function () {\n\t return this._scale.min;\n\t },\n\t set: function (min) {\n\t this._scale.min = min;\n\t }\n\t });\n\t /**\n\t\t * The maximum output value. This number is output when \n\t\t * the value input value is 1. \n\t\t * @memberOf Tone.ScaleExp#\n\t\t * @type {number}\n\t\t * @name max\n\t\t */\n\t Object.defineProperty(Tone.ScaleExp.prototype, 'max', {\n\t get: function () {\n\t return this._scale.max;\n\t },\n\t set: function (max) {\n\t this._scale.max = max;\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.ScaleExp} this\n\t\t */\n\t Tone.ScaleExp.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._scale.dispose();\n\t this._scale = null;\n\t this._exp.dispose();\n\t this._exp = null;\n\t return this;\n\t };\n\t return Tone.ScaleExp;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * createDelay shim\n\t\t * @private\n\t\t */\n\t if (window.DelayNode && !AudioContext.prototype.createDelay) {\n\t AudioContext.prototype.createDelay = AudioContext.prototype.createDelayNode;\n\t }\n\t /**\n\t\t * @class Wrapper around Web Audio's native [DelayNode](http://webaudio.github.io/web-audio-api/#the-delaynode-interface). \n\t\t * @extends {Tone}\n\t\t * @param {Time=} delayTime The delay applied to the incoming signal.\n\t\t * @param {Time=} maxDelay The maximum delay time. \n\t\t */\n\t Tone.Delay = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'delayTime',\n\t 'maxDelay'\n\t ], Tone.Delay.defaults);\n\t /**\n\t\t\t * The native delay node\n\t\t\t * @type {DelayNode}\n\t\t\t * @private\n\t\t\t */\n\t this._delayNode = this.input = this.output = this.context.createDelay(this.toSeconds(options.maxDelay));\n\t /**\n\t\t\t * The amount of time the incoming signal is\n\t\t\t * delayed. \n\t\t\t * @type {Tone.Param}\n\t\t\t * @signal\n\t\t\t */\n\t this.delayTime = new Tone.Param({\n\t 'param': this._delayNode.delayTime,\n\t 'units': Tone.Type.Time,\n\t 'value': options.delayTime\n\t });\n\t this._readOnly('delayTime');\n\t };\n\t Tone.extend(Tone.Delay);\n\t /**\n\t\t * The defaults\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Delay.defaults = {\n\t 'maxDelay': 1,\n\t 'delayTime': 0\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.Delay} this\n\t\t */\n\t Tone.Delay.prototype.dispose = function () {\n\t Tone.Param.prototype.dispose.call(this);\n\t this._delayNode.disconnect();\n\t this._delayNode = null;\n\t this._writable('delayTime');\n\t this.delayTime = null;\n\t return this;\n\t };\n\t return Tone.Delay;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Comb filters are basic building blocks for physical modeling. Read more\n\t\t * about comb filters on [CCRMA's website](https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html).\n\t\t *\n\t\t * @extends {Tone}\n\t\t * @constructor\n\t\t * @param {Time|Object} [delayTime] The delay time of the filter. \n\t\t * @param {NormalRange=} resonance The amount of feedback the filter has. \n\t\t */\n\t Tone.FeedbackCombFilter = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'delayTime',\n\t 'resonance'\n\t ], Tone.FeedbackCombFilter.defaults);\n\t /**\n\t\t\t * the delay node\n\t\t\t * @type {DelayNode}\n\t\t\t * @private\n\t\t\t */\n\t this._delay = this.input = this.output = new Tone.Delay(options.delayTime);\n\t /**\n\t\t\t * The amount of delay of the comb filter. \n\t\t\t * @type {Time}\n\t\t\t * @signal\n\t\t\t */\n\t this.delayTime = this._delay.delayTime;\n\t /**\n\t\t\t * the feedback node\n\t\t\t * @type {GainNode}\n\t\t\t * @private\n\t\t\t */\n\t this._feedback = new Tone.Gain(options.resonance, Tone.Type.NormalRange);\n\t /**\n\t\t\t * The amount of feedback of the delayed signal. \n\t\t\t * @type {NormalRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.resonance = this._feedback.gain;\n\t this._delay.chain(this._feedback, this._delay);\n\t this._readOnly([\n\t 'resonance',\n\t 'delayTime'\n\t ]);\n\t };\n\t Tone.extend(Tone.FeedbackCombFilter);\n\t /**\n\t\t * the default parameters\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.FeedbackCombFilter.defaults = {\n\t 'delayTime': 0.1,\n\t 'resonance': 0.5\n\t };\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.FeedbackCombFilter} this\n\t\t */\n\t Tone.FeedbackCombFilter.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable([\n\t 'resonance',\n\t 'delayTime'\n\t ]);\n\t this._delay.dispose();\n\t this._delay = null;\n\t this.delayTime = null;\n\t this._feedback.dispose();\n\t this._feedback = null;\n\t this.resonance = null;\n\t return this;\n\t };\n\t return Tone.FeedbackCombFilter;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Follower is a crude envelope follower which will follow \n\t\t * the amplitude of an incoming signal. \n\t\t * Take care with small (< 0.02) attack or decay values \n\t\t * as follower has some ripple which is exaggerated\n\t\t * at these values. Read more about envelope followers (also known \n\t\t * as envelope detectors) on [Wikipedia](https://en.wikipedia.org/wiki/Envelope_detector).\n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @param {Time|Object} [attack] The rate at which the follower rises.\n\t\t * @param {Time=} release The rate at which the folower falls. \n\t\t * @example\n\t\t * var follower = new Tone.Follower(0.2, 0.4);\n\t\t */\n\t Tone.Follower = function () {\n\t this.createInsOuts(1, 1);\n\t var options = this.optionsObject(arguments, [\n\t 'attack',\n\t 'release'\n\t ], Tone.Follower.defaults);\n\t /**\n\t\t\t * @type {Tone.Abs}\n\t\t\t * @private\n\t\t\t */\n\t this._abs = new Tone.Abs();\n\t /**\n\t\t\t * the lowpass filter which smooths the input\n\t\t\t * @type {BiquadFilterNode}\n\t\t\t * @private\n\t\t\t */\n\t this._filter = this.context.createBiquadFilter();\n\t this._filter.type = 'lowpass';\n\t this._filter.frequency.value = 0;\n\t this._filter.Q.value = -100;\n\t /**\n\t\t\t * @type {WaveShaperNode}\n\t\t\t * @private\n\t\t\t */\n\t this._frequencyValues = new Tone.WaveShaper();\n\t /**\n\t\t\t * @type {Tone.Subtract}\n\t\t\t * @private\n\t\t\t */\n\t this._sub = new Tone.Subtract();\n\t /**\n\t\t\t * @type {Tone.Delay}\n\t\t\t * @private\n\t\t\t */\n\t this._delay = new Tone.Delay(this.blockTime);\n\t /**\n\t\t\t * this keeps it far from 0, even for very small differences\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._mult = new Tone.Multiply(10000);\n\t /**\n\t\t\t * @private\n\t\t\t * @type {number}\n\t\t\t */\n\t this._attack = options.attack;\n\t /**\n\t\t\t * @private\n\t\t\t * @type {number}\n\t\t\t */\n\t this._release = options.release;\n\t //the smoothed signal to get the values\n\t this.input.chain(this._abs, this._filter, this.output);\n\t //the difference path\n\t this._abs.connect(this._sub, 0, 1);\n\t this._filter.chain(this._delay, this._sub);\n\t //threshold the difference and use the thresh to set the frequency\n\t this._sub.chain(this._mult, this._frequencyValues, this._filter.frequency);\n\t //set the attack and release values in the table\n\t this._setAttackRelease(this._attack, this._release);\n\t };\n\t Tone.extend(Tone.Follower);\n\t /**\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.Follower.defaults = {\n\t 'attack': 0.05,\n\t 'release': 0.5\n\t };\n\t /**\n\t\t * sets the attack and release times in the wave shaper\n\t\t * @param {Time} attack \n\t\t * @param {Time} release \n\t\t * @private\n\t\t */\n\t Tone.Follower.prototype._setAttackRelease = function (attack, release) {\n\t var minTime = this.blockTime;\n\t attack = Tone.Time(attack).toFrequency();\n\t release = Tone.Time(release).toFrequency();\n\t attack = Math.max(attack, minTime);\n\t release = Math.max(release, minTime);\n\t this._frequencyValues.setMap(function (val) {\n\t if (val <= 0) {\n\t return attack;\n\t } else {\n\t return release;\n\t }\n\t });\n\t };\n\t /**\n\t\t * The attack time.\n\t\t * @memberOf Tone.Follower#\n\t\t * @type {Time}\n\t\t * @name attack\n\t\t */\n\t Object.defineProperty(Tone.Follower.prototype, 'attack', {\n\t get: function () {\n\t return this._attack;\n\t },\n\t set: function (attack) {\n\t this._attack = attack;\n\t this._setAttackRelease(this._attack, this._release);\n\t }\n\t });\n\t /**\n\t\t * The release time.\n\t\t * @memberOf Tone.Follower#\n\t\t * @type {Time}\n\t\t * @name release\n\t\t */\n\t Object.defineProperty(Tone.Follower.prototype, 'release', {\n\t get: function () {\n\t return this._release;\n\t },\n\t set: function (release) {\n\t this._release = release;\n\t this._setAttackRelease(this._attack, this._release);\n\t }\n\t });\n\t /**\n\t\t * Borrows the connect method from Signal so that the output can be used\n\t\t * as a Tone.Signal control signal.\n\t\t * @function\n\t\t */\n\t Tone.Follower.prototype.connect = Tone.Signal.prototype.connect;\n\t /**\n\t\t * dispose\n\t\t * @returns {Tone.Follower} this\n\t\t */\n\t Tone.Follower.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._filter.disconnect();\n\t this._filter = null;\n\t this._frequencyValues.disconnect();\n\t this._frequencyValues = null;\n\t this._delay.dispose();\n\t this._delay = null;\n\t this._sub.disconnect();\n\t this._sub = null;\n\t this._abs.dispose();\n\t this._abs = null;\n\t this._mult.dispose();\n\t this._mult = null;\n\t this._curve = null;\n\t return this;\n\t };\n\t return Tone.Follower;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.ScaledEnvelop is an envelope which can be scaled \n\t\t * to any range. It's useful for applying an envelope \n\t\t * to a frequency or any other non-NormalRange signal \n\t\t * parameter. \n\t\t *\n\t\t * @extends {Tone.Envelope}\n\t\t * @constructor\n\t\t * @param {Time|Object} [attack]\tthe attack time in seconds\n\t\t * @param {Time} [decay]\tthe decay time in seconds\n\t\t * @param {number} [sustain] \ta percentage (0-1) of the full amplitude\n\t\t * @param {Time} [release]\tthe release time in seconds\n\t\t * @example\n\t\t * var scaledEnv = new Tone.ScaledEnvelope({\n\t\t * \t\"attack\" : 0.2,\n\t\t * \t\"min\" : 200,\n\t\t * \t\"max\" : 2000\n\t\t * });\n\t\t * scaledEnv.connect(oscillator.frequency);\n\t\t */\n\t Tone.ScaledEnvelope = function () {\n\t //get all of the defaults\n\t var options = this.optionsObject(arguments, [\n\t 'attack',\n\t 'decay',\n\t 'sustain',\n\t 'release'\n\t ], Tone.Envelope.defaults);\n\t Tone.Envelope.call(this, options);\n\t options = this.defaultArg(options, Tone.ScaledEnvelope.defaults);\n\t /** \n\t\t\t * scale the incoming signal by an exponent\n\t\t\t * @type {Tone.Pow}\n\t\t\t * @private\n\t\t\t */\n\t this._exp = this.output = new Tone.Pow(options.exponent);\n\t /**\n\t\t\t * scale the signal to the desired range\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._scale = this.output = new Tone.Scale(options.min, options.max);\n\t this._sig.chain(this._exp, this._scale);\n\t };\n\t Tone.extend(Tone.ScaledEnvelope, Tone.Envelope);\n\t /**\n\t\t * the default parameters\n\t\t * @static\n\t\t */\n\t Tone.ScaledEnvelope.defaults = {\n\t 'min': 0,\n\t 'max': 1,\n\t 'exponent': 1\n\t };\n\t /**\n\t\t * The envelope's min output value. This is the value which it\n\t\t * starts at. \n\t\t * @memberOf Tone.ScaledEnvelope#\n\t\t * @type {number}\n\t\t * @name min\n\t\t */\n\t Object.defineProperty(Tone.ScaledEnvelope.prototype, 'min', {\n\t get: function () {\n\t return this._scale.min;\n\t },\n\t set: function (min) {\n\t this._scale.min = min;\n\t }\n\t });\n\t /**\n\t\t * The envelope's max output value. In other words, the value\n\t\t * at the peak of the attack portion of the envelope. \n\t\t * @memberOf Tone.ScaledEnvelope#\n\t\t * @type {number}\n\t\t * @name max\n\t\t */\n\t Object.defineProperty(Tone.ScaledEnvelope.prototype, 'max', {\n\t get: function () {\n\t return this._scale.max;\n\t },\n\t set: function (max) {\n\t this._scale.max = max;\n\t }\n\t });\n\t /**\n\t\t * The envelope's exponent value. \n\t\t * @memberOf Tone.ScaledEnvelope#\n\t\t * @type {number}\n\t\t * @name exponent\n\t\t */\n\t Object.defineProperty(Tone.ScaledEnvelope.prototype, 'exponent', {\n\t get: function () {\n\t return this._exp.value;\n\t },\n\t set: function (exp) {\n\t this._exp.value = exp;\n\t }\n\t });\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.ScaledEnvelope} this\n\t\t */\n\t Tone.ScaledEnvelope.prototype.dispose = function () {\n\t Tone.Envelope.prototype.dispose.call(this);\n\t this._scale.dispose();\n\t this._scale = null;\n\t this._exp.dispose();\n\t this._exp = null;\n\t return this;\n\t };\n\t return Tone.ScaledEnvelope;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.FrequencyEnvelope is a Tone.ScaledEnvelope, but instead of `min` and `max`\n\t\t * it's got a `baseFrequency` and `octaves` parameter. \n\t\t *\n\t\t * @extends {Tone.Envelope}\n\t\t * @constructor\n\t\t * @param {Time|Object} [attack]\tthe attack time in seconds\n\t\t * @param {Time} [decay]\tthe decay time in seconds\n\t\t * @param {number} [sustain] \ta percentage (0-1) of the full amplitude\n\t\t * @param {Time} [release]\tthe release time in seconds\n\t\t * @example\n\t\t * var env = new Tone.FrequencyEnvelope({\n\t\t * \t\"attack\" : 0.2,\n\t\t * \t\"baseFrequency\" : \"C2\",\n\t\t * \t\"octaves\" : 4\n\t\t * });\n\t\t * scaledEnv.connect(oscillator.frequency);\n\t\t */\n\t Tone.FrequencyEnvelope = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'attack',\n\t 'decay',\n\t 'sustain',\n\t 'release'\n\t ], Tone.Envelope.defaults);\n\t Tone.ScaledEnvelope.call(this, options);\n\t options = this.defaultArg(options, Tone.FrequencyEnvelope.defaults);\n\t /**\n\t\t\t * Stores the octave value\n\t\t\t * @type {Positive}\n\t\t\t * @private\n\t\t\t */\n\t this._octaves = options.octaves;\n\t //setup\n\t this.baseFrequency = options.baseFrequency;\n\t this.octaves = options.octaves;\n\t };\n\t Tone.extend(Tone.FrequencyEnvelope, Tone.Envelope);\n\t /**\n\t\t * the default parameters\n\t\t * @static\n\t\t */\n\t Tone.FrequencyEnvelope.defaults = {\n\t 'baseFrequency': 200,\n\t 'octaves': 4,\n\t 'exponent': 2\n\t };\n\t /**\n\t\t * The envelope's mininum output value. This is the value which it\n\t\t * starts at. \n\t\t * @memberOf Tone.FrequencyEnvelope#\n\t\t * @type {Frequency}\n\t\t * @name baseFrequency\n\t\t */\n\t Object.defineProperty(Tone.FrequencyEnvelope.prototype, 'baseFrequency', {\n\t get: function () {\n\t return this._scale.min;\n\t },\n\t set: function (min) {\n\t this._scale.min = this.toFrequency(min);\n\t //also update the octaves\n\t this.octaves = this._octaves;\n\t }\n\t });\n\t /**\n\t\t * The number of octaves above the baseFrequency that the\n\t\t * envelope will scale to.\n\t\t * @memberOf Tone.FrequencyEnvelope#\n\t\t * @type {Positive}\n\t\t * @name octaves\n\t\t */\n\t Object.defineProperty(Tone.FrequencyEnvelope.prototype, 'octaves', {\n\t get: function () {\n\t return this._octaves;\n\t },\n\t set: function (octaves) {\n\t this._octaves = octaves;\n\t this._scale.max = this.baseFrequency * Math.pow(2, octaves);\n\t }\n\t });\n\t /**\n\t\t * The envelope's exponent value. \n\t\t * @memberOf Tone.FrequencyEnvelope#\n\t\t * @type {number}\n\t\t * @name exponent\n\t\t */\n\t Object.defineProperty(Tone.FrequencyEnvelope.prototype, 'exponent', {\n\t get: function () {\n\t return this._exp.value;\n\t },\n\t set: function (exp) {\n\t this._exp.value = exp;\n\t }\n\t });\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.FrequencyEnvelope} this\n\t\t */\n\t Tone.FrequencyEnvelope.prototype.dispose = function () {\n\t Tone.ScaledEnvelope.prototype.dispose.call(this);\n\t return this;\n\t };\n\t return Tone.FrequencyEnvelope;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Gate only passes a signal through when the incoming \n\t\t * signal exceeds a specified threshold. To do this, Gate uses \n\t\t * a Tone.Follower to follow the amplitude of the incoming signal. \n\t\t * A common implementation of this class is a [Noise Gate](https://en.wikipedia.org/wiki/Noise_gate).\n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @param {Decibels|Object} [threshold] The threshold above which the gate will open. \n\t\t * @param {Time=} attack The follower's attack time\n\t\t * @param {Time=} release The follower's release time\n\t\t * @example\n\t\t * var gate = new Tone.Gate(-30, 0.2, 0.3).toMaster();\n\t\t * var mic = new Tone.UserMedia().connect(gate);\n\t\t * //the gate will only pass through the incoming \n\t\t * //signal when it's louder than -30db\n\t\t */\n\t Tone.Gate = function () {\n\t this.createInsOuts(1, 1);\n\t var options = this.optionsObject(arguments, [\n\t 'threshold',\n\t 'attack',\n\t 'release'\n\t ], Tone.Gate.defaults);\n\t /**\n\t\t\t * @type {Tone.Follower}\n\t\t\t * @private\n\t\t\t */\n\t this._follower = new Tone.Follower(options.attack, options.release);\n\t /**\n\t\t\t * @type {Tone.GreaterThan}\n\t\t\t * @private\n\t\t\t */\n\t this._gt = new Tone.GreaterThan(this.dbToGain(options.threshold));\n\t //the connections\n\t this.input.connect(this.output);\n\t //the control signal\n\t this.input.chain(this._gt, this._follower, this.output.gain);\n\t };\n\t Tone.extend(Tone.Gate);\n\t /**\n\t\t * @const\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.Gate.defaults = {\n\t 'attack': 0.1,\n\t 'release': 0.1,\n\t 'threshold': -40\n\t };\n\t /**\n\t\t * The threshold of the gate in decibels\n\t\t * @memberOf Tone.Gate#\n\t\t * @type {Decibels}\n\t\t * @name threshold\n\t\t */\n\t Object.defineProperty(Tone.Gate.prototype, 'threshold', {\n\t get: function () {\n\t return this.gainToDb(this._gt.value);\n\t },\n\t set: function (thresh) {\n\t this._gt.value = this.dbToGain(thresh);\n\t }\n\t });\n\t /**\n\t\t * The attack speed of the gate\n\t\t * @memberOf Tone.Gate#\n\t\t * @type {Time}\n\t\t * @name attack\n\t\t */\n\t Object.defineProperty(Tone.Gate.prototype, 'attack', {\n\t get: function () {\n\t return this._follower.attack;\n\t },\n\t set: function (attackTime) {\n\t this._follower.attack = attackTime;\n\t }\n\t });\n\t /**\n\t\t * The release speed of the gate\n\t\t * @memberOf Tone.Gate#\n\t\t * @type {Time}\n\t\t * @name release\n\t\t */\n\t Object.defineProperty(Tone.Gate.prototype, 'release', {\n\t get: function () {\n\t return this._follower.release;\n\t },\n\t set: function (releaseTime) {\n\t this._follower.release = releaseTime;\n\t }\n\t });\n\t /**\n\t\t * Clean up. \n\t\t * @returns {Tone.Gate} this\n\t\t */\n\t Tone.Gate.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._follower.dispose();\n\t this._gt.dispose();\n\t this._follower = null;\n\t this._gt = null;\n\t return this;\n\t };\n\t return Tone.Gate;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A Timeline State. Provides the methods: setStateAtTime(\"state\", time)\n\t\t * and getValueAtTime(time).\n\t\t *\n\t\t * @extends {Tone.Timeline}\n\t\t * @param {String} initial The initial state of the TimelineState. \n\t\t * Defaults to undefined\n\t\t */\n\t Tone.TimelineState = function (initial) {\n\t Tone.Timeline.call(this);\n\t /**\n\t\t\t * The initial state\n\t\t\t * @private\n\t\t\t * @type {String}\n\t\t\t */\n\t this._initial = initial;\n\t };\n\t Tone.extend(Tone.TimelineState, Tone.Timeline);\n\t /**\n\t\t * Returns the scheduled state scheduled before or at\n\t\t * the given time.\n\t\t * @param {Number} time The time to query.\n\t\t * @return {String} The name of the state input in setStateAtTime.\n\t\t */\n\t Tone.TimelineState.prototype.getValueAtTime = function (time) {\n\t var event = this.get(time);\n\t if (event !== null) {\n\t return event.state;\n\t } else {\n\t return this._initial;\n\t }\n\t };\n\t /**\n\t\t * Returns the scheduled state scheduled before or at\n\t\t * the given time.\n\t\t * @param {String} state The name of the state to set.\n\t\t * @param {Number} time The time to query.\n\t\t */\n\t Tone.TimelineState.prototype.setStateAtTime = function (state, time) {\n\t this.add({\n\t 'state': state,\n\t 'time': time\n\t });\n\t };\n\t return Tone.TimelineState;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A sample accurate clock which provides a callback at the given rate. \n\t\t * While the callback is not sample-accurate (it is still susceptible to\n\t\t * loose JS timing), the time passed in as the argument to the callback\n\t\t * is precise. For most applications, it is better to use Tone.Transport\n\t\t * instead of the Clock by itself since you can synchronize multiple callbacks.\n\t\t *\n\t\t * \t@constructor\n\t\t * @extends {Tone.Emitter}\n\t\t * \t@param {function} callback The callback to be invoked with the time of the audio event\n\t\t * \t@param {Frequency} frequency The rate of the callback\n\t\t * \t@example\n\t\t * //the callback will be invoked approximately once a second\n\t\t * //and will print the time exactly once a second apart.\n\t\t * var clock = new Tone.Clock(function(time){\n\t\t * \tconsole.log(time);\n\t\t * }, 1);\n\t\t */\n\t Tone.Clock = function () {\n\t Tone.Emitter.call(this);\n\t var options = this.optionsObject(arguments, [\n\t 'callback',\n\t 'frequency'\n\t ], Tone.Clock.defaults);\n\t /**\n\t\t\t * The callback function to invoke at the scheduled tick.\n\t\t\t * @type {Function}\n\t\t\t */\n\t this.callback = options.callback;\n\t /**\n\t\t\t * The next time the callback is scheduled.\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._nextTick = 0;\n\t /**\n\t\t\t * The last state of the clock.\n\t\t\t * @type {State}\n\t\t\t * @private\n\t\t\t */\n\t this._lastState = Tone.State.Stopped;\n\t /**\n\t\t\t * The rate the callback function should be invoked. \n\t\t\t * @type {BPM}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.TimelineSignal(options.frequency, Tone.Type.Frequency);\n\t this._readOnly('frequency');\n\t /**\n\t\t\t * The number of times the callback was invoked. Starts counting at 0\n\t\t\t * and increments after the callback was invoked. \n\t\t\t * @type {Ticks}\n\t\t\t * @readOnly\n\t\t\t */\n\t this.ticks = 0;\n\t /**\n\t\t\t * The state timeline\n\t\t\t * @type {Tone.TimelineState}\n\t\t\t * @private\n\t\t\t */\n\t this._state = new Tone.TimelineState(Tone.State.Stopped);\n\t /**\n\t\t\t * The loop function bound to its context. \n\t\t\t * This is necessary to remove the event in the end.\n\t\t\t * @type {Function}\n\t\t\t * @private\n\t\t\t */\n\t this._boundLoop = this._loop.bind(this);\n\t //bind a callback to the worker thread\n\t this.context.on('tick', this._boundLoop);\n\t };\n\t Tone.extend(Tone.Clock, Tone.Emitter);\n\t /**\n\t\t * The defaults\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Clock.defaults = {\n\t 'callback': Tone.noOp,\n\t 'frequency': 1,\n\t 'lookAhead': 'auto'\n\t };\n\t /**\n\t\t * Returns the playback state of the source, either \"started\", \"stopped\" or \"paused\".\n\t\t * @type {Tone.State}\n\t\t * @readOnly\n\t\t * @memberOf Tone.Clock#\n\t\t * @name state\n\t\t */\n\t Object.defineProperty(Tone.Clock.prototype, 'state', {\n\t get: function () {\n\t return this._state.getValueAtTime(this.now());\n\t }\n\t });\n\t /**\n\t\t * Start the clock at the given time. Optionally pass in an offset\n\t\t * of where to start the tick counter from.\n\t\t * @param {Time} time The time the clock should start\n\t\t * @param {Ticks=} offset Where the tick counter starts counting from.\n\t\t * @return {Tone.Clock} this\n\t\t */\n\t Tone.Clock.prototype.start = function (time, offset) {\n\t time = this.toSeconds(time);\n\t if (this._state.getValueAtTime(time) !== Tone.State.Started) {\n\t this._state.add({\n\t 'state': Tone.State.Started,\n\t 'time': time,\n\t 'offset': offset\n\t });\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Stop the clock. Stopping the clock resets the tick counter to 0.\n\t\t * @param {Time} [time=now] The time when the clock should stop.\n\t\t * @returns {Tone.Clock} this\n\t\t * @example\n\t\t * clock.stop();\n\t\t */\n\t Tone.Clock.prototype.stop = function (time) {\n\t time = this.toSeconds(time);\n\t this._state.cancel(time);\n\t this._state.setStateAtTime(Tone.State.Stopped, time);\n\t return this;\n\t };\n\t /**\n\t\t * Pause the clock. Pausing does not reset the tick counter.\n\t\t * @param {Time} [time=now] The time when the clock should stop.\n\t\t * @returns {Tone.Clock} this\n\t\t */\n\t Tone.Clock.prototype.pause = function (time) {\n\t time = this.toSeconds(time);\n\t if (this._state.getValueAtTime(time) === Tone.State.Started) {\n\t this._state.setStateAtTime(Tone.State.Paused, time);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * The scheduling loop.\n\t\t * @param {Number} time The current page time starting from 0\n\t\t * when the page was loaded.\n\t\t * @private\n\t\t */\n\t Tone.Clock.prototype._loop = function () {\n\t //get the frequency value to compute the value of the next loop\n\t var now = this.now();\n\t //if it's started\n\t var lookAhead = this.context.lookAhead;\n\t var updateInterval = this.context.updateInterval;\n\t var lagCompensation = this.context.lag * 2;\n\t var loopInterval = now + lookAhead + updateInterval + lagCompensation;\n\t while (loopInterval > this._nextTick && this._state) {\n\t var currentState = this._state.getValueAtTime(this._nextTick);\n\t if (currentState !== this._lastState) {\n\t this._lastState = currentState;\n\t var event = this._state.get(this._nextTick);\n\t // emit an event\n\t if (currentState === Tone.State.Started) {\n\t //correct the time\n\t this._nextTick = event.time;\n\t if (!this.isUndef(event.offset)) {\n\t this.ticks = event.offset;\n\t }\n\t this.emit('start', event.time, this.ticks);\n\t } else if (currentState === Tone.State.Stopped) {\n\t this.ticks = 0;\n\t this.emit('stop', event.time);\n\t } else if (currentState === Tone.State.Paused) {\n\t this.emit('pause', event.time);\n\t }\n\t }\n\t var tickTime = this._nextTick;\n\t if (this.frequency) {\n\t this._nextTick += 1 / this.frequency.getValueAtTime(this._nextTick);\n\t if (currentState === Tone.State.Started) {\n\t this.callback(tickTime);\n\t this.ticks++;\n\t }\n\t }\n\t }\n\t };\n\t /**\n\t\t * Returns the scheduled state at the given time.\n\t\t * @param {Time} time The time to query.\n\t\t * @return {String} The name of the state input in setStateAtTime.\n\t\t * @example\n\t\t * clock.start(\"+0.1\");\n\t\t * clock.getStateAtTime(\"+0.1\"); //returns \"started\"\n\t\t */\n\t Tone.Clock.prototype.getStateAtTime = function (time) {\n\t time = this.toSeconds(time);\n\t return this._state.getValueAtTime(time);\n\t };\n\t /**\n\t\t * Clean up\n\t\t * @returns {Tone.Clock} this\n\t\t */\n\t Tone.Clock.prototype.dispose = function () {\n\t Tone.Emitter.prototype.dispose.call(this);\n\t this.context.off('tick', this._boundLoop);\n\t this._writable('frequency');\n\t this.frequency.dispose();\n\t this.frequency = null;\n\t this._boundLoop = null;\n\t this._nextTick = Infinity;\n\t this.callback = null;\n\t this._state.dispose();\n\t this._state = null;\n\t };\n\t return Tone.Clock;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Similar to Tone.Timeline, but all events represent\n\t\t * intervals with both \"time\" and \"duration\" times. The \n\t\t * events are placed in a tree structure optimized\n\t\t * for querying an intersection point with the timeline\n\t\t * events. Internally uses an [Interval Tree](https://en.wikipedia.org/wiki/Interval_tree)\n\t\t * to represent the data.\n\t\t * @extends {Tone}\n\t\t */\n\t Tone.IntervalTimeline = function () {\n\t /**\n\t\t\t * The root node of the inteval tree\n\t\t\t * @type {IntervalNode}\n\t\t\t * @private\n\t\t\t */\n\t this._root = null;\n\t /**\n\t\t\t * Keep track of the length of the timeline.\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._length = 0;\n\t };\n\t Tone.extend(Tone.IntervalTimeline);\n\t /**\n\t\t * The event to add to the timeline. All events must \n\t\t * have a time and duration value\n\t\t * @param {Object} event The event to add to the timeline\n\t\t * @return {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.add = function (event) {\n\t if (this.isUndef(event.time) || this.isUndef(event.duration)) {\n\t throw new Error('Tone.IntervalTimeline: events must have time and duration parameters');\n\t }\n\t var node = new IntervalNode(event.time, event.time + event.duration, event);\n\t if (this._root === null) {\n\t this._root = node;\n\t } else {\n\t this._root.insert(node);\n\t }\n\t this._length++;\n\t // Restructure tree to be balanced\n\t while (node !== null) {\n\t node.updateHeight();\n\t node.updateMax();\n\t this._rebalance(node);\n\t node = node.parent;\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Remove an event from the timeline.\n\t\t * @param {Object} event The event to remove from the timeline\n\t\t * @return {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.remove = function (event) {\n\t if (this._root !== null) {\n\t var results = [];\n\t this._root.search(event.time, results);\n\t for (var i = 0; i < results.length; i++) {\n\t var node = results[i];\n\t if (node.event === event) {\n\t this._removeNode(node);\n\t this._length--;\n\t break;\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * The number of items in the timeline.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.IntervalTimeline#\n\t\t * @name length\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.IntervalTimeline.prototype, 'length', {\n\t get: function () {\n\t return this._length;\n\t }\n\t });\n\t /**\n\t\t * Remove events whose time time is after the given time\n\t\t * @param {Number} time The time to query.\n\t\t * @returns {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.cancel = function (after) {\n\t this.forEachAfter(after, function (event) {\n\t this.remove(event);\n\t }.bind(this));\n\t return this;\n\t };\n\t /**\n\t\t * Set the root node as the given node\n\t\t * @param {IntervalNode} node\n\t\t * @private\n\t\t */\n\t Tone.IntervalTimeline.prototype._setRoot = function (node) {\n\t this._root = node;\n\t if (this._root !== null) {\n\t this._root.parent = null;\n\t }\n\t };\n\t /**\n\t\t * Replace the references to the node in the node's parent\n\t\t * with the replacement node.\n\t\t * @param {IntervalNode} node \n\t\t * @param {IntervalNode} replacement \n\t\t * @private\n\t\t */\n\t Tone.IntervalTimeline.prototype._replaceNodeInParent = function (node, replacement) {\n\t if (node.parent !== null) {\n\t if (node.isLeftChild()) {\n\t node.parent.left = replacement;\n\t } else {\n\t node.parent.right = replacement;\n\t }\n\t this._rebalance(node.parent);\n\t } else {\n\t this._setRoot(replacement);\n\t }\n\t };\n\t /**\n\t\t * Remove the node from the tree and replace it with \n\t\t * a successor which follows the schema.\n\t\t * @param {IntervalNode} node\n\t\t * @private\n\t\t */\n\t Tone.IntervalTimeline.prototype._removeNode = function (node) {\n\t if (node.left === null && node.right === null) {\n\t this._replaceNodeInParent(node, null);\n\t } else if (node.right === null) {\n\t this._replaceNodeInParent(node, node.left);\n\t } else if (node.left === null) {\n\t this._replaceNodeInParent(node, node.right);\n\t } else {\n\t var balance = node.getBalance();\n\t var replacement, temp;\n\t if (balance > 0) {\n\t if (node.left.right === null) {\n\t replacement = node.left;\n\t replacement.right = node.right;\n\t temp = replacement;\n\t } else {\n\t replacement = node.left.right;\n\t while (replacement.right !== null) {\n\t replacement = replacement.right;\n\t }\n\t replacement.parent.right = replacement.left;\n\t temp = replacement.parent;\n\t replacement.left = node.left;\n\t replacement.right = node.right;\n\t }\n\t } else {\n\t if (node.right.left === null) {\n\t replacement = node.right;\n\t replacement.left = node.left;\n\t temp = replacement;\n\t } else {\n\t replacement = node.right.left;\n\t while (replacement.left !== null) {\n\t replacement = replacement.left;\n\t }\n\t replacement.parent = replacement.parent;\n\t replacement.parent.left = replacement.right;\n\t temp = replacement.parent;\n\t replacement.left = node.left;\n\t replacement.right = node.right;\n\t }\n\t }\n\t if (node.parent !== null) {\n\t if (node.isLeftChild()) {\n\t node.parent.left = replacement;\n\t } else {\n\t node.parent.right = replacement;\n\t }\n\t } else {\n\t this._setRoot(replacement);\n\t }\n\t // this._replaceNodeInParent(node, replacement);\n\t this._rebalance(temp);\n\t }\n\t node.dispose();\n\t };\n\t /**\n\t\t * Rotate the tree to the left\n\t\t * @param {IntervalNode} node\n\t\t * @private\n\t\t */\n\t Tone.IntervalTimeline.prototype._rotateLeft = function (node) {\n\t var parent = node.parent;\n\t var isLeftChild = node.isLeftChild();\n\t // Make node.right the new root of this sub tree (instead of node)\n\t var pivotNode = node.right;\n\t node.right = pivotNode.left;\n\t pivotNode.left = node;\n\t if (parent !== null) {\n\t if (isLeftChild) {\n\t parent.left = pivotNode;\n\t } else {\n\t parent.right = pivotNode;\n\t }\n\t } else {\n\t this._setRoot(pivotNode);\n\t }\n\t };\n\t /**\n\t\t * Rotate the tree to the right\n\t\t * @param {IntervalNode} node\n\t\t * @private\n\t\t */\n\t Tone.IntervalTimeline.prototype._rotateRight = function (node) {\n\t var parent = node.parent;\n\t var isLeftChild = node.isLeftChild();\n\t // Make node.left the new root of this sub tree (instead of node)\n\t var pivotNode = node.left;\n\t node.left = pivotNode.right;\n\t pivotNode.right = node;\n\t if (parent !== null) {\n\t if (isLeftChild) {\n\t parent.left = pivotNode;\n\t } else {\n\t parent.right = pivotNode;\n\t }\n\t } else {\n\t this._setRoot(pivotNode);\n\t }\n\t };\n\t /**\n\t\t * Balance the BST\n\t\t * @param {IntervalNode} node\n\t\t * @private\n\t\t */\n\t Tone.IntervalTimeline.prototype._rebalance = function (node) {\n\t var balance = node.getBalance();\n\t if (balance > 1) {\n\t if (node.left.getBalance() < 0) {\n\t this._rotateLeft(node.left);\n\t } else {\n\t this._rotateRight(node);\n\t }\n\t } else if (balance < -1) {\n\t if (node.right.getBalance() > 0) {\n\t this._rotateRight(node.right);\n\t } else {\n\t this._rotateLeft(node);\n\t }\n\t }\n\t };\n\t /**\n\t\t * Get an event whose time and duration span the give time. Will\n\t\t * return the match whose \"time\" value is closest to the given time.\n\t\t * @param {Object} event The event to add to the timeline\n\t\t * @return {Object} The event which spans the desired time\n\t\t */\n\t Tone.IntervalTimeline.prototype.get = function (time) {\n\t if (this._root !== null) {\n\t var results = [];\n\t this._root.search(time, results);\n\t if (results.length > 0) {\n\t var max = results[0];\n\t for (var i = 1; i < results.length; i++) {\n\t if (results[i].low > max.low) {\n\t max = results[i];\n\t }\n\t }\n\t return max.event;\n\t }\n\t }\n\t return null;\n\t };\n\t /**\n\t\t * Iterate over everything in the timeline.\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.forEach = function (callback) {\n\t if (this._root !== null) {\n\t var allNodes = [];\n\t if (this._root !== null) {\n\t this._root.traverse(function (node) {\n\t allNodes.push(node);\n\t });\n\t }\n\t for (var i = 0; i < allNodes.length; i++) {\n\t var ev = allNodes[i].event;\n\t if (ev) {\n\t callback(ev);\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over everything in the array in which the given time\n\t\t * overlaps with the time and duration time of the event.\n\t\t * @param {Number} time The time to check if items are overlapping\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.forEachAtTime = function (time, callback) {\n\t if (this._root !== null) {\n\t var results = [];\n\t this._root.search(time, results);\n\t for (var i = results.length - 1; i >= 0; i--) {\n\t var ev = results[i].event;\n\t if (ev) {\n\t callback(ev);\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over everything in the array in which the time is greater\n\t\t * than the given time.\n\t\t * @param {Number} time The time to check if items are before\n\t\t * @param {Function} callback The callback to invoke with every item\n\t\t * @returns {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.forEachAfter = function (time, callback) {\n\t if (this._root !== null) {\n\t var results = [];\n\t this._root.searchAfter(time, results);\n\t for (var i = results.length - 1; i >= 0; i--) {\n\t var ev = results[i].event;\n\t if (ev) {\n\t callback(ev);\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.IntervalTimeline} this\n\t\t */\n\t Tone.IntervalTimeline.prototype.dispose = function () {\n\t var allNodes = [];\n\t if (this._root !== null) {\n\t this._root.traverse(function (node) {\n\t allNodes.push(node);\n\t });\n\t }\n\t for (var i = 0; i < allNodes.length; i++) {\n\t allNodes[i].dispose();\n\t }\n\t allNodes = null;\n\t this._root = null;\n\t return this;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tINTERVAL NODE HELPER\n\t ///////////////////////////////////////////////////////////////////////////\n\t /**\n\t\t * Represents a node in the binary search tree, with the addition\n\t\t * of a \"high\" value which keeps track of the highest value of\n\t\t * its children. \n\t\t * References: \n\t\t * https://brooknovak.wordpress.com/2013/12/07/augmented-interval-tree-in-c/\n\t\t * http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf\n\t\t * @param {Number} low\n\t\t * @param {Number} high\n\t\t * @private\n\t\t */\n\t var IntervalNode = function (low, high, event) {\n\t //the event container\n\t this.event = event;\n\t //the low value\n\t this.low = low;\n\t //the high value\n\t this.high = high;\n\t //the high value for this and all child nodes\n\t this.max = this.high;\n\t //the nodes to the left\n\t this._left = null;\n\t //the nodes to the right\n\t this._right = null;\n\t //the parent node\n\t this.parent = null;\n\t //the number of child nodes\n\t this.height = 0;\n\t };\n\t /** \n\t\t * Insert a node into the correct spot in the tree\n\t\t * @param {IntervalNode} node\n\t\t */\n\t IntervalNode.prototype.insert = function (node) {\n\t if (node.low <= this.low) {\n\t if (this.left === null) {\n\t this.left = node;\n\t } else {\n\t this.left.insert(node);\n\t }\n\t } else {\n\t if (this.right === null) {\n\t this.right = node;\n\t } else {\n\t this.right.insert(node);\n\t }\n\t }\n\t };\n\t /**\n\t\t * Search the tree for nodes which overlap \n\t\t * with the given point\n\t\t * @param {Number} point The point to query\n\t\t * @param {Array} results The array to put the results\n\t\t */\n\t IntervalNode.prototype.search = function (point, results) {\n\t // If p is to the right of the rightmost point of any interval\n\t // in this node and all children, there won't be any matches.\n\t if (point > this.max) {\n\t return;\n\t }\n\t // Search left children\n\t if (this.left !== null) {\n\t this.left.search(point, results);\n\t }\n\t // Check this node\n\t if (this.low <= point && this.high > point) {\n\t results.push(this);\n\t }\n\t // If p is to the left of the time of this interval,\n\t // then it can't be in any child to the right.\n\t if (this.low > point) {\n\t return;\n\t }\n\t // Search right children\n\t if (this.right !== null) {\n\t this.right.search(point, results);\n\t }\n\t };\n\t /**\n\t\t * Search the tree for nodes which are less \n\t\t * than the given point\n\t\t * @param {Number} point The point to query\n\t\t * @param {Array} results The array to put the results\n\t\t */\n\t IntervalNode.prototype.searchAfter = function (point, results) {\n\t // Check this node\n\t if (this.low >= point) {\n\t results.push(this);\n\t if (this.left !== null) {\n\t this.left.searchAfter(point, results);\n\t }\n\t }\n\t // search the right side\n\t if (this.right !== null) {\n\t this.right.searchAfter(point, results);\n\t }\n\t };\n\t /**\n\t\t * Invoke the callback on this element and both it's branches\n\t\t * @param {Function} callback\n\t\t */\n\t IntervalNode.prototype.traverse = function (callback) {\n\t callback(this);\n\t if (this.left !== null) {\n\t this.left.traverse(callback);\n\t }\n\t if (this.right !== null) {\n\t this.right.traverse(callback);\n\t }\n\t };\n\t /**\n\t\t * Update the height of the node\n\t\t */\n\t IntervalNode.prototype.updateHeight = function () {\n\t if (this.left !== null && this.right !== null) {\n\t this.height = Math.max(this.left.height, this.right.height) + 1;\n\t } else if (this.right !== null) {\n\t this.height = this.right.height + 1;\n\t } else if (this.left !== null) {\n\t this.height = this.left.height + 1;\n\t } else {\n\t this.height = 0;\n\t }\n\t };\n\t /**\n\t\t * Update the height of the node\n\t\t */\n\t IntervalNode.prototype.updateMax = function () {\n\t this.max = this.high;\n\t if (this.left !== null) {\n\t this.max = Math.max(this.max, this.left.max);\n\t }\n\t if (this.right !== null) {\n\t this.max = Math.max(this.max, this.right.max);\n\t }\n\t };\n\t /**\n\t\t * The balance is how the leafs are distributed on the node\n\t\t * @return {Number} Negative numbers are balanced to the right\n\t\t */\n\t IntervalNode.prototype.getBalance = function () {\n\t var balance = 0;\n\t if (this.left !== null && this.right !== null) {\n\t balance = this.left.height - this.right.height;\n\t } else if (this.left !== null) {\n\t balance = this.left.height + 1;\n\t } else if (this.right !== null) {\n\t balance = -(this.right.height + 1);\n\t }\n\t return balance;\n\t };\n\t /**\n\t\t * @returns {Boolean} true if this node is the left child\n\t\t * of its parent\n\t\t */\n\t IntervalNode.prototype.isLeftChild = function () {\n\t return this.parent !== null && this.parent.left === this;\n\t };\n\t /**\n\t\t * get/set the left node\n\t\t * @type {IntervalNode}\n\t\t */\n\t Object.defineProperty(IntervalNode.prototype, 'left', {\n\t get: function () {\n\t return this._left;\n\t },\n\t set: function (node) {\n\t this._left = node;\n\t if (node !== null) {\n\t node.parent = this;\n\t }\n\t this.updateHeight();\n\t this.updateMax();\n\t }\n\t });\n\t /**\n\t\t * get/set the right node\n\t\t * @type {IntervalNode}\n\t\t */\n\t Object.defineProperty(IntervalNode.prototype, 'right', {\n\t get: function () {\n\t return this._right;\n\t },\n\t set: function (node) {\n\t this._right = node;\n\t if (node !== null) {\n\t node.parent = this;\n\t }\n\t this.updateHeight();\n\t this.updateMax();\n\t }\n\t });\n\t /**\n\t\t * null out references.\n\t\t */\n\t IntervalNode.prototype.dispose = function () {\n\t this.parent = null;\n\t this._left = null;\n\t this._right = null;\n\t this.event = null;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t //\tEND INTERVAL NODE HELPER\n\t ///////////////////////////////////////////////////////////////////////////\n\t return Tone.IntervalTimeline;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Transport for timing musical events.\n\t\t * Supports tempo curves and time changes. Unlike browser-based timing (setInterval, requestAnimationFrame)\n\t\t * Tone.Transport timing events pass in the exact time of the scheduled event\n\t\t * in the argument of the callback function. Pass that time value to the object\n\t\t * you're scheduling. input[0]\n\t\t\t * @type {GainNode}\n\t\t\t */\n\t this.left = this.input[0] = new Tone.Gain();\n\t /**\n\t\t\t * The right input channel.\n\t\t\t * Alias for input[1].\n\t\t\t * @type {GainNode}\n\t\t\t */\n\t this.right = this.input[1] = new Tone.Gain();\n\t /**\n\t\t\t * the merger node for the two channels\n\t\t\t * @type {ChannelMergerNode}\n\t\t\t * @private\n\t\t\t */\n\t this._merger = this.output = this.context.createChannelMerger(2);\n\t //connections\n\t this.left.connect(this._merger, 0, 0);\n\t this.right.connect(this._merger, 0, 1);\n\t this.left.channelCount = 1;\n\t this.right.channelCount = 1;\n\t this.left.channelCountMode = 'explicit';\n\t this.right.channelCountMode = 'explicit';\n\t };\n\t Tone.extend(Tone.Merge);\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Merge} this\n\t\t */\n\t Tone.Merge.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this.left.dispose();\n\t this.left = null;\n\t this.right.dispose();\n\t this.right = null;\n\t this._merger.disconnect();\n\t this._merger = null;\n\t return this;\n\t };\n\t return Tone.Merge;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Meter gets the [RMS](https://en.wikipedia.org/wiki/Root_mean_square)\n\t\t * of an input signal with some averaging applied. It can also get the raw \n\t\t * value of the input signal.\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @param {String} type Either \"level\" or \"signal\". \n\t\t * @param {Number} smoothing The amount of smoothing applied between frames.\n\t\t * @example\n\t\t * var meter = new Tone.Meter();\n\t\t * var mic = new Tone.UserMedia().start();\n\t\t * //connect mic to the meter\n\t\t * mic.connect(meter);\n\t\t * //the current level of the mic input\n\t\t * var level = meter.value;\n\t\t */\n\t Tone.Meter = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'type',\n\t 'smoothing'\n\t ], Tone.Meter.defaults);\n\t /**\n\t\t\t * The type of the meter, either \"level\" or \"signal\". \n\t\t\t * A \"level\" meter will return the volume level (rms) of the \n\t\t\t * input signal and a \"signal\" meter will return\n\t\t\t * the signal value of the input. \n\t\t\t * @type {String}\n\t\t\t */\n\t this.type = options.type;\n\t /**\n\t\t\t * The analyser node which computes the levels.\n\t\t\t * @private\n\t\t\t * @type {Tone.Analyser}\n\t\t\t */\n\t this.input = this.output = this._analyser = new Tone.Analyser('waveform', 512);\n\t this._analyser.returnType = 'float';\n\t /**\n\t\t\t * The amount of carryover between the current and last frame. \n\t\t\t * Only applied meter for \"level\" type.\n\t\t\t * @type {Number}\n\t\t\t */\n\t this.smoothing = options.smoothing;\n\t /**\n\t\t\t * The last computed value\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._lastValue = 0;\n\t };\n\t Tone.extend(Tone.Meter);\n\t /**\n\t\t * @private\n\t\t * @enum {String}\n\t\t */\n\t Tone.Meter.Type = {\n\t Level: 'level',\n\t Signal: 'signal'\n\t };\n\t /**\n\t\t * The defaults\n\t\t * @type {Object}\n\t\t * @static\n\t\t * @const\n\t\t */\n\t Tone.Meter.defaults = {\n\t 'smoothing': 0.8,\n\t 'type': Tone.Meter.Type.Level\n\t };\n\t /**\n\t\t * The current value of the meter. A value of 1 is\n\t\t * \"unity\".\n\t\t * @memberOf Tone.Meter#\n\t\t * @type {Number}\n\t\t * @name value\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Meter.prototype, 'value', {\n\t get: function () {\n\t var signal = this._analyser.analyse();\n\t if (this.type === Tone.Meter.Type.Level) {\n\t //rms\n\t var sum = 0;\n\t for (var i = 0; i < signal.length; i++) {\n\t sum += Math.pow(signal[i], 2);\n\t }\n\t var rms = Math.sqrt(sum / signal.length);\n\t //smooth it\n\t rms = Math.max(rms, this._lastValue * this.smoothing);\n\t this._lastValue = rms;\n\t //scale it\n\t var unity = 0.35;\n\t var val = rms / unity;\n\t //scale the output curve\n\t return Math.sqrt(val);\n\t } else {\n\t return signal[0];\n\t }\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Meter} this\n\t\t */\n\t Tone.Meter.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._analyser.dispose();\n\t this._analyser = null;\n\t return this;\n\t };\n\t return Tone.Meter;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t *\t@class Tone.Split splits an incoming signal into left and right channels.\n\t\t *\t\n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @example\n\t\t * var split = new Tone.Split();\n\t\t * stereoSignal.connect(split);\n\t\t */\n\t Tone.Split = function () {\n\t this.createInsOuts(0, 2);\n\t /** \n\t\t\t * @type {ChannelSplitterNode}\n\t\t\t * @private\n\t\t\t */\n\t this._splitter = this.input = this.context.createChannelSplitter(2);\n\t /** \n\t\t\t * Left channel output. \n\t\t\t * Alias for output[0]\n\t\t\t * @type {Tone.Gain}\n\t\t\t */\n\t this.left = this.output[0] = new Tone.Gain();\n\t /**\n\t\t\t * Right channel output.\n\t\t\t * Alias for output[1]\n\t\t\t * @type {Tone.Gain}\n\t\t\t */\n\t this.right = this.output[1] = new Tone.Gain();\n\t //connections\n\t this._splitter.connect(this.left, 0, 0);\n\t this._splitter.connect(this.right, 1, 0);\n\t };\n\t Tone.extend(Tone.Split);\n\t /**\n\t\t * Clean up. \n\t\t * @returns {Tone.Split} this\n\t\t */\n\t Tone.Split.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._splitter.disconnect();\n\t this.left.dispose();\n\t this.left = null;\n\t this.right.dispose();\n\t this.right = null;\n\t this._splitter = null;\n\t return this;\n\t };\n\t return Tone.Split;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Mid/Side processing separates the the 'mid' signal \n\t\t * (which comes out of both the left and the right channel) \n\t\t * and the 'side' (which only comes out of the the side channels). \n\t\t * Mid = (Left+Right)/sqrt(2); // obtain mid-signal from left and right
\n\t\t * Side = (Left-Right)/sqrt(2); // obtain side-signal from left and righ
\n\t\t * \n\t\t *\n\t\t * @extends {Tone}\n\t\t * @constructor\n\t\t */\n\t Tone.MidSideSplit = function () {\n\t this.createInsOuts(0, 2);\n\t /**\n\t\t\t * split the incoming signal into left and right channels\n\t\t\t * @type {Tone.Split}\n\t\t\t * @private\n\t\t\t */\n\t this._split = this.input = new Tone.Split();\n\t /**\n\t\t\t * The mid send. Connect to mid processing. Alias for\n\t\t\t * output[0]\n\t\t\t * @type {Tone.Expr}\n\t\t\t */\n\t this.mid = this.output[0] = new Tone.Expr('($0 + $1) * $2');\n\t /**\n\t\t\t * The side output. Connect to side processing. Alias for\n\t\t\t * output[1]\n\t\t\t * @type {Tone.Expr}\n\t\t\t */\n\t this.side = this.output[1] = new Tone.Expr('($0 - $1) * $2');\n\t this._split.connect(this.mid, 0, 0);\n\t this._split.connect(this.mid, 1, 1);\n\t this._split.connect(this.side, 0, 0);\n\t this._split.connect(this.side, 1, 1);\n\t this.context.getConstant(Math.SQRT1_2).connect(this.mid, 0, 2);\n\t this.context.getConstant(Math.SQRT1_2).connect(this.side, 0, 2);\n\t };\n\t Tone.extend(Tone.MidSideSplit);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.MidSideSplit} this\n\t\t */\n\t Tone.MidSideSplit.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this.mid.dispose();\n\t this.mid = null;\n\t this.side.dispose();\n\t this.side = null;\n\t this._split.dispose();\n\t this._split = null;\n\t return this;\n\t };\n\t return Tone.MidSideSplit;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Mid/Side processing separates the the 'mid' signal \n\t\t * (which comes out of both the left and the right channel) \n\t\t * and the 'side' (which only comes out of the the side channels). \n\t\t * MidSideMerge merges the mid and side signal after they've been seperated\n\t\t * by Tone.MidSideSplit.\n\t\t * Left = (Mid+Side)/sqrt(2); // obtain left signal from mid and side
\n\t\t * Right = (Mid-Side)/sqrt(2); // obtain right signal from mid and side
\n\t\t * \n\t\t *\n\t\t * @extends {Tone.StereoEffect}\n\t\t * @constructor\n\t\t */\n\t Tone.MidSideMerge = function () {\n\t this.createInsOuts(2, 0);\n\t /**\n\t\t\t * The mid signal input. Alias for\n\t\t\t * input[0]\n\t\t\t * @type {Tone.Gain}\n\t\t\t */\n\t this.mid = this.input[0] = new Tone.Gain();\n\t /**\n\t\t\t * recombine the mid/side into Left\n\t\t\t * @type {Tone.Expr}\n\t\t\t * @private\n\t\t\t */\n\t this._left = new Tone.Expr('($0 + $1) * $2');\n\t /**\n\t\t\t * The side signal input. Alias for\n\t\t\t * input[1]\n\t\t\t * @type {Tone.Gain}\n\t\t\t */\n\t this.side = this.input[1] = new Tone.Gain();\n\t /**\n\t\t\t * recombine the mid/side into Right\n\t\t\t * @type {Tone.Expr}\n\t\t\t * @private\n\t\t\t */\n\t this._right = new Tone.Expr('($0 - $1) * $2');\n\t /**\n\t\t\t * Merge the left/right signal back into a stereo signal.\n\t\t\t * @type {Tone.Merge}\n\t\t\t * @private\n\t\t\t */\n\t this._merge = this.output = new Tone.Merge();\n\t this.mid.connect(this._left, 0, 0);\n\t this.side.connect(this._left, 0, 1);\n\t this.mid.connect(this._right, 0, 0);\n\t this.side.connect(this._right, 0, 1);\n\t this._left.connect(this._merge, 0, 0);\n\t this._right.connect(this._merge, 0, 1);\n\t this.context.getConstant(Math.SQRT1_2).connect(this._left, 0, 2);\n\t this.context.getConstant(Math.SQRT1_2).connect(this._right, 0, 2);\n\t };\n\t Tone.extend(Tone.MidSideMerge);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.MidSideMerge} this\n\t\t */\n\t Tone.MidSideMerge.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this.mid.dispose();\n\t this.mid = null;\n\t this.side.dispose();\n\t this.side = null;\n\t this._left.dispose();\n\t this._left = null;\n\t this._right.dispose();\n\t this._right = null;\n\t this._merge.dispose();\n\t this._merge = null;\n\t return this;\n\t };\n\t return Tone.MidSideMerge;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.MidSideCompressor applies two different compressors to the mid\n\t\t * and side signal components. See Tone.MidSideSplit. \n\t\t *\n\t\t * @extends {Tone}\n\t\t * @param {Object} options The options that are passed to the mid and side\n\t\t * compressors. \n\t\t * @constructor\n\t\t */\n\t Tone.MidSideCompressor = function (options) {\n\t options = this.defaultArg(options, Tone.MidSideCompressor.defaults);\n\t /**\n\t\t\t * the mid/side split\n\t\t\t * @type {Tone.MidSideSplit}\n\t\t\t * @private\n\t\t\t */\n\t this._midSideSplit = this.input = new Tone.MidSideSplit();\n\t /**\n\t\t\t * the mid/side recombination\n\t\t\t * @type {Tone.MidSideMerge}\n\t\t\t * @private\n\t\t\t */\n\t this._midSideMerge = this.output = new Tone.MidSideMerge();\n\t /**\n\t\t\t * The compressor applied to the mid signal\n\t\t\t * @type {Tone.Compressor}\n\t\t\t */\n\t this.mid = new Tone.Compressor(options.mid);\n\t /**\n\t\t\t * The compressor applied to the side signal\n\t\t\t * @type {Tone.Compressor}\n\t\t\t */\n\t this.side = new Tone.Compressor(options.side);\n\t this._midSideSplit.mid.chain(this.mid, this._midSideMerge.mid);\n\t this._midSideSplit.side.chain(this.side, this._midSideMerge.side);\n\t this._readOnly([\n\t 'mid',\n\t 'side'\n\t ]);\n\t };\n\t Tone.extend(Tone.MidSideCompressor);\n\t /**\n\t\t * @const\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.MidSideCompressor.defaults = {\n\t 'mid': {\n\t 'ratio': 3,\n\t 'threshold': -24,\n\t 'release': 0.03,\n\t 'attack': 0.02,\n\t 'knee': 16\n\t },\n\t 'side': {\n\t 'ratio': 6,\n\t 'threshold': -30,\n\t 'release': 0.25,\n\t 'attack': 0.03,\n\t 'knee': 10\n\t }\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.MidSideCompressor} this\n\t\t */\n\t Tone.MidSideCompressor.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable([\n\t 'mid',\n\t 'side'\n\t ]);\n\t this.mid.dispose();\n\t this.mid = null;\n\t this.side.dispose();\n\t this.side = null;\n\t this._midSideSplit.dispose();\n\t this._midSideSplit = null;\n\t this._midSideMerge.dispose();\n\t this._midSideMerge = null;\n\t return this;\n\t };\n\t return Tone.MidSideCompressor;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Mono coerces the incoming mono or stereo signal into a mono signal\n\t\t * where both left and right channels have the same value. This can be useful \n\t\t * for [stereo imaging](https://en.wikipedia.org/wiki/Stereo_imaging).\n\t\t *\n\t\t * @extends {Tone}\n\t\t * @constructor\n\t\t */\n\t Tone.Mono = function () {\n\t this.createInsOuts(1, 0);\n\t /**\n\t\t\t * merge the signal\n\t\t\t * @type {Tone.Merge}\n\t\t\t * @private\n\t\t\t */\n\t this._merge = this.output = new Tone.Merge();\n\t this.input.connect(this._merge, 0, 0);\n\t this.input.connect(this._merge, 0, 1);\n\t this.input.gain.value = this.dbToGain(-10);\n\t };\n\t Tone.extend(Tone.Mono);\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.Mono} this\n\t\t */\n\t Tone.Mono.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._merge.dispose();\n\t this._merge = null;\n\t return this;\n\t };\n\t return Tone.Mono;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A compressor with seperate controls over low/mid/high dynamics\n\t\t *\n\t\t * @extends {Tone}\n\t\t * @constructor\n\t\t * @param {Object} options The low/mid/high compressor settings.\n\t\t * @example\n\t\t * var multiband = new Tone.MultibandCompressor({\n\t\t * \t\"lowFrequency\" : 200,\n\t\t * \t\"highFrequency\" : 1300\n\t\t * \t\"low\" : {\n\t\t * \t\t\"threshold\" : -12\n\t\t * \t}\n\t\t * })\n\t\t */\n\t Tone.MultibandCompressor = function (options) {\n\t options = this.defaultArg(arguments, Tone.MultibandCompressor.defaults);\n\t /**\n\t\t\t * split the incoming signal into high/mid/low\n\t\t\t * @type {Tone.MultibandSplit}\n\t\t\t * @private\n\t\t\t */\n\t this._splitter = this.input = new Tone.MultibandSplit({\n\t 'lowFrequency': options.lowFrequency,\n\t 'highFrequency': options.highFrequency\n\t });\n\t /**\n\t\t\t * low/mid crossover frequency.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.lowFrequency = this._splitter.lowFrequency;\n\t /**\n\t\t\t * mid/high crossover frequency.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.highFrequency = this._splitter.highFrequency;\n\t /**\n\t\t\t * the output\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this.output = new Tone.Gain();\n\t /**\n\t\t\t * The compressor applied to the low frequencies.\n\t\t\t * @type {Tone.Compressor}\n\t\t\t */\n\t this.low = new Tone.Compressor(options.low);\n\t /**\n\t\t\t * The compressor applied to the mid frequencies.\n\t\t\t * @type {Tone.Compressor}\n\t\t\t */\n\t this.mid = new Tone.Compressor(options.mid);\n\t /**\n\t\t\t * The compressor applied to the high frequencies.\n\t\t\t * @type {Tone.Compressor}\n\t\t\t */\n\t this.high = new Tone.Compressor(options.high);\n\t //connect the compressor\n\t this._splitter.low.chain(this.low, this.output);\n\t this._splitter.mid.chain(this.mid, this.output);\n\t this._splitter.high.chain(this.high, this.output);\n\t this._readOnly([\n\t 'high',\n\t 'mid',\n\t 'low',\n\t 'highFrequency',\n\t 'lowFrequency'\n\t ]);\n\t };\n\t Tone.extend(Tone.MultibandCompressor);\n\t /**\n\t\t * @const\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.MultibandCompressor.defaults = {\n\t 'low': Tone.Compressor.defaults,\n\t 'mid': Tone.Compressor.defaults,\n\t 'high': Tone.Compressor.defaults,\n\t 'lowFrequency': 250,\n\t 'highFrequency': 2000\n\t };\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.MultibandCompressor} this\n\t\t */\n\t Tone.MultibandCompressor.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._splitter.dispose();\n\t this._writable([\n\t 'high',\n\t 'mid',\n\t 'low',\n\t 'highFrequency',\n\t 'lowFrequency'\n\t ]);\n\t this.low.dispose();\n\t this.mid.dispose();\n\t this.high.dispose();\n\t this._splitter = null;\n\t this.low = null;\n\t this.mid = null;\n\t this.high = null;\n\t this.lowFrequency = null;\n\t this.highFrequency = null;\n\t return this;\n\t };\n\t return Tone.MultibandCompressor;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Panner is an equal power Left/Right Panner and does not\n\t\t * support 3D. Panner uses the StereoPannerNode when available. \n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @param {NormalRange} [initialPan=0] The initail panner value (defaults to 0 = center)\n\t\t * @example\n\t\t * //pan the input signal hard right. \n\t\t * var panner = new Tone.Panner(1);\n\t\t */\n\t Tone.Panner = function (initialPan) {\n\t if (this._hasStereoPanner) {\n\t /**\n\t\t\t\t * the panner node\n\t\t\t\t * @type {StereoPannerNode}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._panner = this.input = this.output = this.context.createStereoPanner();\n\t /**\n\t\t\t\t * The pan control. -1 = hard left, 1 = hard right. \n\t\t\t\t * @type {NormalRange}\n\t\t\t\t * @signal\n\t\t\t\t */\n\t this.pan = this._panner.pan;\n\t } else {\n\t /**\n\t\t\t\t * the dry/wet knob\n\t\t\t\t * @type {Tone.CrossFade}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._crossFade = new Tone.CrossFade();\n\t /**\n\t\t\t\t * @type {Tone.Merge}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._merger = this.output = new Tone.Merge();\n\t /**\n\t\t\t\t * @type {Tone.Split}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._splitter = this.input = new Tone.Split();\n\t /**\n\t\t\t\t * The pan control. -1 = hard left, 1 = hard right. \n\t\t\t\t * @type {AudioRange}\n\t\t\t\t * @signal\n\t\t\t\t */\n\t this.pan = new Tone.Signal(0, Tone.Type.AudioRange);\n\t /**\n\t\t\t\t * always sends 0\n\t\t\t\t * @type {Tone.Zero}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._zero = new Tone.Zero();\n\t /**\n\t\t\t\t * The analog to gain conversion\n\t\t\t\t * @type {Tone.AudioToGain}\n\t\t\t\t * @private\n\t\t\t\t */\n\t this._a2g = new Tone.AudioToGain();\n\t //CONNECTIONS:\n\t this._zero.connect(this._a2g);\n\t this.pan.chain(this._a2g, this._crossFade.fade);\n\t //left channel is a, right channel is b\n\t this._splitter.connect(this._crossFade, 0, 0);\n\t this._splitter.connect(this._crossFade, 1, 1);\n\t //merge it back together\n\t this._crossFade.a.connect(this._merger, 0, 0);\n\t this._crossFade.b.connect(this._merger, 0, 1);\n\t }\n\t //initial value\n\t this.pan.value = this.defaultArg(initialPan, 0);\n\t this._readOnly('pan');\n\t };\n\t Tone.extend(Tone.Panner);\n\t /**\n\t\t * indicates if the panner is using the new StereoPannerNode internally\n\t\t * @type {boolean}\n\t\t * @private\n\t\t */\n\t Tone.Panner.prototype._hasStereoPanner = Tone.prototype.isFunction(Tone.context.createStereoPanner);\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Panner} this\n\t\t */\n\t Tone.Panner.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable('pan');\n\t if (this._hasStereoPanner) {\n\t this._panner.disconnect();\n\t this._panner = null;\n\t this.pan = null;\n\t } else {\n\t this._zero.dispose();\n\t this._zero = null;\n\t this._crossFade.dispose();\n\t this._crossFade = null;\n\t this._splitter.dispose();\n\t this._splitter = null;\n\t this._merger.dispose();\n\t this._merger = null;\n\t this.pan.dispose();\n\t this.pan = null;\n\t this._a2g.dispose();\n\t this._a2g = null;\n\t }\n\t return this;\n\t };\n\t return Tone.Panner;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A spatialized panner node which supports equalpower or HRTF panning.\n\t\t * Tries to normalize the API across various browsers. See Tone.Listener\n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t * @param {Number} positionX The initial x position.\n\t\t * @param {Number} positionY The initial y position.\n\t\t * @param {Number} positionZ The initial z position.\n\t\t */\n\t Tone.Panner3D = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'positionX',\n\t 'positionY',\n\t 'positionZ'\n\t ], Tone.Panner3D.defaults);\n\t /**\n\t\t\t * The panner node\n\t\t\t * @type {PannerNode}\n\t\t\t * @private\n\t\t\t */\n\t this._panner = this.input = this.output = this.context.createPanner();\n\t //set some values\n\t this._panner.panningModel = options.panningModel;\n\t this._panner.maxDistance = options.maxDistance;\n\t this._panner.distanceModel = options.distanceModel;\n\t this._panner.coneOuterGain = options.coneOuterGain;\n\t this._panner.coneOuterAngle = options.coneOuterAngle;\n\t this._panner.coneInnerAngle = options.coneInnerAngle;\n\t this._panner.refDistance = options.refDistance;\n\t this._panner.rolloffFactor = options.rolloffFactor;\n\t /**\n\t\t\t * Holds the current orientation\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._orientation = [\n\t options.orientationX,\n\t options.orientationY,\n\t options.orientationZ\n\t ];\n\t /**\n\t\t\t * Holds the current position\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._position = [\n\t options.positionX,\n\t options.positionY,\n\t options.positionZ\n\t ];\n\t // set the default position/orientation\n\t this.orientationX = options.orientationX;\n\t this.orientationY = options.orientationY;\n\t this.orientationZ = options.orientationZ;\n\t this.positionX = options.positionX;\n\t this.positionY = options.positionY;\n\t this.positionZ = options.positionZ;\n\t };\n\t Tone.extend(Tone.Panner3D);\n\t /**\n\t\t * the default parameters\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t * Defaults according to the specification\n\t\t */\n\t Tone.Panner3D.defaults = {\n\t 'positionX': 0,\n\t 'positionY': 0,\n\t 'positionZ': 0,\n\t 'orientationX': 0,\n\t 'orientationY': 0,\n\t 'orientationZ': 0,\n\t 'panningModel': 'equalpower',\n\t 'maxDistance': 10000,\n\t 'distanceModel': 'inverse',\n\t 'coneOuterGain': 0,\n\t 'coneOuterAngle': 360,\n\t 'coneInnerAngle': 360,\n\t 'refDistance': 1,\n\t 'rolloffFactor': 1\n\t };\n\t /**\n\t\t * The ramp time which is applied to the setTargetAtTime\n\t\t * @type {Number}\n\t\t * @private\n\t\t */\n\t Tone.Panner3D.prototype._rampTimeConstant = 0.01;\n\t /**\n\t\t * Sets the position of the source in 3d space.\t\n\t\t * @param {Number} x\n\t\t * @param {Number} y\n\t\t * @param {Number} z\n\t\t * @return {Tone.Panner3D} this\n\t\t */\n\t Tone.Panner3D.prototype.setPosition = function (x, y, z) {\n\t if (this._panner.positionX) {\n\t var now = this.now();\n\t this._panner.positionX.setTargetAtTime(x, now, this._rampTimeConstant);\n\t this._panner.positionY.setTargetAtTime(y, now, this._rampTimeConstant);\n\t this._panner.positionZ.setTargetAtTime(z, now, this._rampTimeConstant);\n\t } else {\n\t this._panner.setPosition(x, y, z);\n\t }\n\t this._position = Array.prototype.slice.call(arguments);\n\t return this;\n\t };\n\t /**\n\t\t * Sets the orientation of the source in 3d space.\t\n\t\t * @param {Number} x\n\t\t * @param {Number} y\n\t\t * @param {Number} z\n\t\t * @return {Tone.Panner3D} this\n\t\t */\n\t Tone.Panner3D.prototype.setOrientation = function (x, y, z) {\n\t if (this._panner.orientationX) {\n\t var now = this.now();\n\t this._panner.orientationX.setTargetAtTime(x, now, this._rampTimeConstant);\n\t this._panner.orientationY.setTargetAtTime(y, now, this._rampTimeConstant);\n\t this._panner.orientationZ.setTargetAtTime(z, now, this._rampTimeConstant);\n\t } else {\n\t this._panner.setOrientation(x, y, z);\n\t }\n\t this._orientation = Array.prototype.slice.call(arguments);\n\t return this;\n\t };\n\t /**\n\t\t * The x position of the panner object.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name positionX\n\t\t */\n\t Object.defineProperty(Tone.Panner3D.prototype, 'positionX', {\n\t set: function (pos) {\n\t this._position[0] = pos;\n\t this.setPosition.apply(this, this._position);\n\t },\n\t get: function () {\n\t return this._position[0];\n\t }\n\t });\n\t /**\n\t\t * The y position of the panner object.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name positionY\n\t\t */\n\t Object.defineProperty(Tone.Panner3D.prototype, 'positionY', {\n\t set: function (pos) {\n\t this._position[1] = pos;\n\t this.setPosition.apply(this, this._position);\n\t },\n\t get: function () {\n\t return this._position[1];\n\t }\n\t });\n\t /**\n\t\t * The z position of the panner object.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name positionZ\n\t\t */\n\t Object.defineProperty(Tone.Panner3D.prototype, 'positionZ', {\n\t set: function (pos) {\n\t this._position[2] = pos;\n\t this.setPosition.apply(this, this._position);\n\t },\n\t get: function () {\n\t return this._position[2];\n\t }\n\t });\n\t /**\n\t\t * The x orientation of the panner object.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name orientationX\n\t\t */\n\t Object.defineProperty(Tone.Panner3D.prototype, 'orientationX', {\n\t set: function (pos) {\n\t this._orientation[0] = pos;\n\t this.setOrientation.apply(this, this._orientation);\n\t },\n\t get: function () {\n\t return this._orientation[0];\n\t }\n\t });\n\t /**\n\t\t * The y orientation of the panner object.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name orientationY\n\t\t */\n\t Object.defineProperty(Tone.Panner3D.prototype, 'orientationY', {\n\t set: function (pos) {\n\t this._orientation[1] = pos;\n\t this.setOrientation.apply(this, this._orientation);\n\t },\n\t get: function () {\n\t return this._orientation[1];\n\t }\n\t });\n\t /**\n\t\t * The z orientation of the panner object.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name orientationZ\n\t\t */\n\t Object.defineProperty(Tone.Panner3D.prototype, 'orientationZ', {\n\t set: function (pos) {\n\t this._orientation[2] = pos;\n\t this.setOrientation.apply(this, this._orientation);\n\t },\n\t get: function () {\n\t return this._orientation[2];\n\t }\n\t });\n\t /**\n\t\t * Proxy a property on the panner to an exposed public propery\n\t\t * @param {String} prop\n\t\t * @private\n\t\t */\n\t Tone.Panner3D._aliasProperty = function (prop) {\n\t Object.defineProperty(Tone.Panner3D.prototype, prop, {\n\t set: function (val) {\n\t this._panner[prop] = val;\n\t },\n\t get: function () {\n\t return this._panner[prop];\n\t }\n\t });\n\t };\n\t /**\n\t\t * The panning model. Either \"equalpower\" or \"HRTF\".\n\t\t * @type {String}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name panningModel\n\t\t */\n\t Tone.Panner3D._aliasProperty('panningModel');\n\t /**\n\t\t * A reference distance for reducing volume as source move further from the listener\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name refDistance\n\t\t */\n\t Tone.Panner3D._aliasProperty('refDistance');\n\t /**\n\t\t * Describes how quickly the volume is reduced as source moves away from listener.\n\t\t * @type {Number}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name rolloffFactor\n\t\t */\n\t Tone.Panner3D._aliasProperty('rolloffFactor');\n\t /**\n\t\t * The distance model used by, \"linear\", \"inverse\", or \"exponential\".\n\t\t * @type {String}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name distanceModel\n\t\t */\n\t Tone.Panner3D._aliasProperty('distanceModel');\n\t /**\n\t\t * The angle, in degrees, inside of which there will be no volume reduction\n\t\t * @type {Degrees}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name coneInnerAngle\n\t\t */\n\t Tone.Panner3D._aliasProperty('coneInnerAngle');\n\t /**\n\t\t * The angle, in degrees, outside of which the volume will be reduced \n\t\t * to a constant value of coneOuterGain\n\t\t * @type {Degrees}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name coneOuterAngle\n\t\t */\n\t Tone.Panner3D._aliasProperty('coneOuterAngle');\n\t /**\n\t\t * The gain outside of the coneOuterAngle\n\t\t * @type {Gain}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name coneOuterGain\n\t\t */\n\t Tone.Panner3D._aliasProperty('coneOuterGain');\n\t /**\n\t\t * The maximum distance between source and listener, \n\t\t * after which the volume will not be reduced any further.\n\t\t * @type {Positive}\n\t\t * @memberOf Tone.Panner3D#\n\t\t * @name maxDistance\n\t\t */\n\t Tone.Panner3D._aliasProperty('maxDistance');\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Panner3D} this\n\t\t */\n\t Tone.Panner3D.prototype.dispose = function () {\n\t this._panner.disconnect();\n\t this._panner = null;\n\t this._orientation = null;\n\t this._position = null;\n\t return this;\n\t };\n\t return Tone.Panner3D;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.PanVol is a Tone.Panner and Tone.Volume in one.\n\t\t *\n\t\t * @extends {Tone}\n\t\t * @constructor\n\t\t * @param {AudioRange} pan the initial pan\n\t\t * @param {number} volume The output volume. \n\t\t * @example\n\t\t * //pan the incoming signal left and drop the volume\n\t\t * var panVol = new Tone.PanVol(0.25, -12);\n\t\t */\n\t Tone.PanVol = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'pan',\n\t 'volume'\n\t ], Tone.PanVol.defaults);\n\t /**\n\t\t\t * The panning node\n\t\t\t * @type {Tone.Panner}\n\t\t\t * @private\n\t\t\t */\n\t this._panner = this.input = new Tone.Panner(options.pan);\n\t /**\n\t\t\t * The L/R panning control.\n\t\t\t * @type {AudioRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.pan = this._panner.pan;\n\t /**\n\t\t\t * The volume node\n\t\t\t * @type {Tone.Volume}\n\t\t\t */\n\t this._volume = this.output = new Tone.Volume(options.volume);\n\t /**\n\t\t\t * The volume control in decibels. \n\t\t\t * @type {Decibels}\n\t\t\t * @signal\n\t\t\t */\n\t this.volume = this._volume.volume;\n\t //connections\n\t this._panner.connect(this._volume);\n\t this._readOnly([\n\t 'pan',\n\t 'volume'\n\t ]);\n\t };\n\t Tone.extend(Tone.PanVol);\n\t /**\n\t\t * The defaults\n\t\t * @type {Object}\n\t\t * @const\n\t\t * @static\n\t\t */\n\t Tone.PanVol.defaults = {\n\t 'pan': 0.5,\n\t 'volume': 0\n\t };\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.PanVol} this\n\t\t */\n\t Tone.PanVol.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._writable([\n\t 'pan',\n\t 'volume'\n\t ]);\n\t this._panner.dispose();\n\t this._panner = null;\n\t this.pan = null;\n\t this._volume.dispose();\n\t this._volume = null;\n\t this.volume = null;\n\t return this;\n\t };\n\t return Tone.PanVol;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.CtrlInterpolate will interpolate between given values based\n\t\t * on the \"index\" property. Passing in an array or object literal\n\t\t * will interpolate each of the parameters. Note (i.e. \"C3\")\n\t\t * and Time (i.e. \"4n + 2\") can be interpolated. All other values are\n\t\t * assumed to be numbers. \n\t\t * @example\n\t\t * var interp = new Tone.CtrlInterpolate([0, 2, 9, 4]);\n\t\t * interp.index = 0.75;\n\t\t * interp.value; //returns 1.5\n\t\t *\n\t\t * @example\n\t\t * var interp = new Tone.CtrlInterpolate([\n\t\t * \t[2, 4, 5],\n\t\t * \t[9, 3, 2],\n\t\t * ]);\n\t\t * @param {Array} values The array of values to interpolate over\n\t\t * @param {Positive} index The initial interpolation index.\n\t\t * @extends {Tone}\n\t\t */\n\t Tone.CtrlInterpolate = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'values',\n\t 'index'\n\t ], Tone.CtrlInterpolate.defaults);\n\t /**\n\t\t\t * The values to interpolate between\n\t\t\t * @type {Array}\n\t\t\t */\n\t this.values = options.values;\n\t /**\n\t\t\t * The interpolated index between values. For example: a value of 1.5\n\t\t\t * would interpolate equally between the value at index 1\n\t\t\t * and the value at index 2. \n\t\t\t * @example\n\t\t\t * interp.index = 0; \n\t\t\t * interp.value; //returns the value at 0\n\t\t\t * interp.index = 0.5;\n\t\t\t * interp.value; //returns the value between indices 0 and 1. \n\t\t\t * @type {Positive}\n\t\t\t */\n\t this.index = options.index;\n\t };\n\t Tone.extend(Tone.CtrlInterpolate);\n\t /**\n\t\t * The defaults\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.CtrlInterpolate.defaults = {\n\t 'index': 0,\n\t 'values': []\n\t };\n\t /**\n\t\t * The current interpolated value based on the index\n\t\t * @readOnly\n\t\t * @memberOf Tone.CtrlInterpolate#\n\t\t * @type {*}\n\t\t * @name value\n\t\t */\n\t Object.defineProperty(Tone.CtrlInterpolate.prototype, 'value', {\n\t get: function () {\n\t var index = this.index;\n\t index = Math.min(index, this.values.length - 1);\n\t var lowerPosition = Math.floor(index);\n\t var lower = this.values[lowerPosition];\n\t var upper = this.values[Math.ceil(index)];\n\t return this._interpolate(index - lowerPosition, lower, upper);\n\t }\n\t });\n\t /**\n\t\t * Internal interpolation routine\n\t\t * @param {NormalRange} index The index between the lower and upper\n\t\t * @param {*} lower \n\t\t * @param {*} upper \n\t\t * @return {*} The interpolated value\n\t\t * @private\n\t\t */\n\t Tone.CtrlInterpolate.prototype._interpolate = function (index, lower, upper) {\n\t if (this.isArray(lower)) {\n\t var retArray = [];\n\t for (var i = 0; i < lower.length; i++) {\n\t retArray[i] = this._interpolate(index, lower[i], upper[i]);\n\t }\n\t return retArray;\n\t } else if (this.isObject(lower)) {\n\t var retObj = {};\n\t for (var attr in lower) {\n\t retObj[attr] = this._interpolate(index, lower[attr], upper[attr]);\n\t }\n\t return retObj;\n\t } else {\n\t lower = this._toNumber(lower);\n\t upper = this._toNumber(upper);\n\t return (1 - index) * lower + index * upper;\n\t }\n\t };\n\t /**\n\t\t * Convert from the given type into a number\n\t\t * @param {Number|String} value\n\t\t * @return {Number}\n\t\t * @private\n\t\t */\n\t Tone.CtrlInterpolate.prototype._toNumber = function (val) {\n\t if (this.isNumber(val)) {\n\t return val;\n\t } else {\n\t //otherwise assume that it's Time...\n\t return this.toSeconds(val);\n\t }\n\t };\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.CtrlInterpolate} this\n\t\t */\n\t Tone.CtrlInterpolate.prototype.dispose = function () {\n\t this.values = null;\n\t };\n\t return Tone.CtrlInterpolate;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.CtrlMarkov represents a Markov Chain where each call\n\t\t * to Tone.CtrlMarkov.next will move to the next state. If the next\n\t\t * state choice is an array, the next state is chosen randomly with\n\t\t * even probability for all of the choices. For a weighted probability\n\t\t * of the next choices, pass in an object with \"state\" and \"probability\" attributes. \n\t\t * The probabilities will be normalized and then chosen. If no next options\n\t\t * are given for the current state, the state will stay there. \n\t\t * @extends {Tone}\n\t\t * @example\n\t\t * var chain = new Tone.CtrlMarkov({\n\t\t * \t\"beginning\" : [\"end\", \"middle\"],\n\t\t * \t\"middle\" : \"end\"\n\t\t * });\n\t\t * chain.value = \"beginning\";\n\t\t * chain.next(); //returns \"end\" or \"middle\" with 50% probability\n\t\t *\n\t\t * @example\n\t\t * var chain = new Tone.CtrlMarkov({\n\t\t * \t\"beginning\" : [{\"value\" : \"end\", \"probability\" : 0.8}, \n\t\t * \t\t\t\t\t{\"value\" : \"middle\", \"probability\" : 0.2}],\n\t\t * \t\"middle\" : \"end\"\n\t\t * });\n\t\t * chain.value = \"beginning\";\n\t\t * chain.next(); //returns \"end\" with 80% probability or \"middle\" with 20%.\n\t\t * @param {Object} values An object with the state names as the keys\n\t\t * and the next state(s) as the values. \n\t\t */\n\t Tone.CtrlMarkov = function (values, initial) {\n\t /**\n\t\t\t * The Markov values with states as the keys\n\t\t\t * and next state(s) as the values. \n\t\t\t * @type {Object}\n\t\t\t */\n\t this.values = this.defaultArg(values, {});\n\t /**\n\t\t\t * The current state of the Markov values. The next\n\t\t\t * state will be evaluated and returned when Tone.CtrlMarkov.next\n\t\t\t * is invoked.\n\t\t\t * @type {String}\n\t\t\t */\n\t this.value = this.defaultArg(initial, Object.keys(this.values)[0]);\n\t };\n\t Tone.extend(Tone.CtrlMarkov);\n\t /**\n\t\t * Returns the next state of the Markov values. \n\t\t * @return {String}\n\t\t */\n\t Tone.CtrlMarkov.prototype.next = function () {\n\t if (this.values.hasOwnProperty(this.value)) {\n\t var next = this.values[this.value];\n\t if (this.isArray(next)) {\n\t var distribution = this._getProbDistribution(next);\n\t var rand = Math.random();\n\t var total = 0;\n\t for (var i = 0; i < distribution.length; i++) {\n\t var dist = distribution[i];\n\t if (rand > total && rand < total + dist) {\n\t var chosen = next[i];\n\t if (this.isObject(chosen)) {\n\t this.value = chosen.value;\n\t } else {\n\t this.value = chosen;\n\t }\n\t }\n\t total += dist;\n\t }\n\t } else {\n\t this.value = next;\n\t }\n\t }\n\t return this.value;\n\t };\n\t /**\n\t\t * Choose randomly from an array weighted options in the form \n\t\t * {\"state\" : string, \"probability\" : number} or an array of values\n\t\t * @param {Array} options \n\t\t * @return {Array} The randomly selected choice\n\t\t * @private\n\t\t */\n\t Tone.CtrlMarkov.prototype._getProbDistribution = function (options) {\n\t var distribution = [];\n\t var total = 0;\n\t var needsNormalizing = false;\n\t for (var i = 0; i < options.length; i++) {\n\t var option = options[i];\n\t if (this.isObject(option)) {\n\t needsNormalizing = true;\n\t distribution[i] = option.probability;\n\t } else {\n\t distribution[i] = 1 / options.length;\n\t }\n\t total += distribution[i];\n\t }\n\t if (needsNormalizing) {\n\t //normalize the values\n\t for (var j = 0; j < distribution.length; j++) {\n\t distribution[j] = distribution[j] / total;\n\t }\n\t }\n\t return distribution;\n\t };\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.CtrlMarkov} this\n\t\t */\n\t Tone.CtrlMarkov.prototype.dispose = function () {\n\t this.values = null;\n\t };\n\t return Tone.CtrlMarkov;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Generate patterns from an array of values.\n\t\t * Has a number of arpeggiation and randomized\n\t\t * selection patterns. \n\t\t * \n\t\t * Mid *= 2*(1-width)
\n\t\t * Side *= 2*width\n\t\t * \n\t\t *\n\t\t * @extends {Tone.MidSideEffect}\n\t\t * @constructor\n\t\t * @param {NormalRange|Object} [width] The stereo width. A width of 0 is mono and 1 is stereo. 0.5 is no change.\n\t\t */\n\t Tone.StereoWidener = function () {\n\t var options = this.optionsObject(arguments, ['width'], Tone.StereoWidener.defaults);\n\t Tone.MidSideEffect.call(this, options);\n\t /**\n\t\t\t * The width control. 0 = 100% mid. 1 = 100% side. 0.5 = no change. \n\t\t\t * @type {NormalRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.width = new Tone.Signal(options.width, Tone.Type.NormalRange);\n\t /**\n\t\t\t * Mid multiplier\n\t\t\t * @type {Tone.Expr}\n\t\t\t * @private\n\t\t\t */\n\t this._midMult = new Tone.Expr('$0 * ($1 * (1 - $2))');\n\t /**\n\t\t\t * Side multiplier\n\t\t\t * @type {Tone.Expr}\n\t\t\t * @private\n\t\t\t */\n\t this._sideMult = new Tone.Expr('$0 * ($1 * $2)');\n\t /**\n\t\t\t * constant output of 2\n\t\t\t * @type {Tone}\n\t\t\t * @private\n\t\t\t */\n\t this._two = new Tone.Signal(2);\n\t //the mid chain\n\t this._two.connect(this._midMult, 0, 1);\n\t this.width.connect(this._midMult, 0, 2);\n\t //the side chain\n\t this._two.connect(this._sideMult, 0, 1);\n\t this.width.connect(this._sideMult, 0, 2);\n\t //connect it to the effect send/return\n\t this.midSend.chain(this._midMult, this.midReturn);\n\t this.sideSend.chain(this._sideMult, this.sideReturn);\n\t this._readOnly(['width']);\n\t };\n\t Tone.extend(Tone.StereoWidener, Tone.MidSideEffect);\n\t /**\n\t\t * the default values\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.StereoWidener.defaults = { 'width': 0.5 };\n\t /**\n\t\t * Clean up. \n\t\t * @returns {Tone.StereoWidener} this\n\t\t */\n\t Tone.StereoWidener.prototype.dispose = function () {\n\t Tone.MidSideEffect.prototype.dispose.call(this);\n\t this._writable(['width']);\n\t this.width.dispose();\n\t this.width = null;\n\t this._midMult.dispose();\n\t this._midMult = null;\n\t this._sideMult.dispose();\n\t this._sideMult = null;\n\t this._two.dispose();\n\t this._two = null;\n\t return this;\n\t };\n\t return Tone.StereoWidener;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Tremolo modulates the amplitude of an incoming signal using a Tone.LFO.\n\t\t * The type, frequency, and depth of the LFO is controllable.\n\t\t *\n\t\t * @extends {Tone.StereoEffect}\n\t\t * @constructor\n\t\t * @param {Frequency} [frequency] The rate of the effect.\n\t\t * @param {NormalRange} [depth] The depth of the effect.\n\t\t * @example\n\t\t * //create a tremolo and start it's LFO\n\t\t * var tremolo = new Tone.Tremolo(9, 0.75).toMaster().start();\n\t\t * //route an oscillator through the tremolo and start it\n\t\t * var oscillator = new Tone.Oscillator().connect(tremolo).start();\n\t\t */\n\t Tone.Tremolo = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'depth'\n\t ], Tone.Tremolo.defaults);\n\t Tone.StereoEffect.call(this, options);\n\t /**\n\t\t\t * The tremelo LFO in the left channel\n\t\t\t * @type {Tone.LFO}\n\t\t\t * @private\n\t\t\t */\n\t this._lfoL = new Tone.LFO({\n\t 'phase': options.spread,\n\t 'min': 1,\n\t 'max': 0\n\t });\n\t /**\n\t\t\t * The tremelo LFO in the left channel\n\t\t\t * @type {Tone.LFO}\n\t\t\t * @private\n\t\t\t */\n\t this._lfoR = new Tone.LFO({\n\t 'phase': options.spread,\n\t 'min': 1,\n\t 'max': 0\n\t });\n\t /**\n\t\t\t * Where the gain is multiplied\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._amplitudeL = new Tone.Gain();\n\t /**\n\t\t\t * Where the gain is multiplied\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._amplitudeR = new Tone.Gain();\n\t /**\n\t\t\t * The frequency of the tremolo.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The depth of the effect. A depth of 0, has no effect\n\t\t\t * on the amplitude, and a depth of 1 makes the amplitude\n\t\t\t * modulate fully between 0 and 1.\n\t\t\t * @type {NormalRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.depth = new Tone.Signal(options.depth, Tone.Type.NormalRange);\n\t this._readOnly([\n\t 'frequency',\n\t 'depth'\n\t ]);\n\t this.effectSendL.chain(this._amplitudeL, this.effectReturnL);\n\t this.effectSendR.chain(this._amplitudeR, this.effectReturnR);\n\t this._lfoL.connect(this._amplitudeL.gain);\n\t this._lfoR.connect(this._amplitudeR.gain);\n\t this.frequency.fan(this._lfoL.frequency, this._lfoR.frequency);\n\t this.depth.fan(this._lfoR.amplitude, this._lfoL.amplitude);\n\t this.type = options.type;\n\t this.spread = options.spread;\n\t };\n\t Tone.extend(Tone.Tremolo, Tone.StereoEffect);\n\t /**\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Tremolo.defaults = {\n\t 'frequency': 10,\n\t 'type': 'sine',\n\t 'depth': 0.5,\n\t 'spread': 180\n\t };\n\t /**\n\t\t * Start the tremolo.\n\t\t * @param {Time} [time=now] When the tremolo begins.\n\t\t * @returns {Tone.Tremolo} this\n\t\t */\n\t Tone.Tremolo.prototype.start = function (time) {\n\t this._lfoL.start(time);\n\t this._lfoR.start(time);\n\t return this;\n\t };\n\t /**\n\t\t * Stop the tremolo.\n\t\t * @param {Time} [time=now] When the tremolo stops.\n\t\t * @returns {Tone.Tremolo} this\n\t\t */\n\t Tone.Tremolo.prototype.stop = function (time) {\n\t this._lfoL.stop(time);\n\t this._lfoR.stop(time);\n\t return this;\n\t };\n\t /**\n\t\t * Sync the effect to the transport.\n\t\t * @param {Time} [delay=0] Delay time before starting the effect after the\n\t\t * Transport has started.\n\t\t * @returns {Tone.AutoFilter} this\n\t\t */\n\t Tone.Tremolo.prototype.sync = function (delay) {\n\t this._lfoL.sync(delay);\n\t this._lfoR.sync(delay);\n\t return this;\n\t };\n\t /**\n\t\t * Unsync the filter from the transport\n\t\t * @returns {Tone.Tremolo} this\n\t\t */\n\t Tone.Tremolo.prototype.unsync = function () {\n\t this._lfoL.unsync();\n\t this._lfoR.unsync();\n\t return this;\n\t };\n\t /**\n\t\t * The Tremolo's oscillator type.\n\t\t * @memberOf Tone.Tremolo#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.Tremolo.prototype, 'type', {\n\t get: function () {\n\t return this._lfoL.type;\n\t },\n\t set: function (type) {\n\t this._lfoL.type = type;\n\t this._lfoR.type = type;\n\t }\n\t });\n\t /** \n\t\t * Amount of stereo spread. When set to 0, both LFO's will be panned centrally.\n\t\t * When set to 180, LFO's will be panned hard left and right respectively.\n\t\t * @memberOf Tone.Tremolo#\n\t\t * @type {Degrees}\n\t\t * @name spread\n\t\t */\n\t Object.defineProperty(Tone.Tremolo.prototype, 'spread', {\n\t get: function () {\n\t return this._lfoR.phase - this._lfoL.phase; //180\n\t },\n\t set: function (spread) {\n\t this._lfoL.phase = 90 - spread / 2;\n\t this._lfoR.phase = spread / 2 + 90;\n\t }\n\t });\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.Tremolo} this\n\t\t */\n\t Tone.Tremolo.prototype.dispose = function () {\n\t Tone.StereoEffect.prototype.dispose.call(this);\n\t this._writable([\n\t 'frequency',\n\t 'depth'\n\t ]);\n\t this._lfoL.dispose();\n\t this._lfoL = null;\n\t this._lfoR.dispose();\n\t this._lfoR = null;\n\t this._amplitudeL.dispose();\n\t this._amplitudeL = null;\n\t this._amplitudeR.dispose();\n\t this._amplitudeR = null;\n\t this.frequency = null;\n\t this.depth = null;\n\t return this;\n\t };\n\t return Tone.Tremolo;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A Vibrato effect composed of a Tone.Delay and a Tone.LFO. The LFO\n\t\t * modulates the delayTime of the delay, causing the pitch to rise\n\t\t * and fall. \n\t\t * @extends {Tone.Effect}\n\t\t * @param {Frequency} frequency The frequency of the vibrato.\n\t\t * @param {NormalRange} depth The amount the pitch is modulated.\n\t\t */\n\t Tone.Vibrato = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'depth'\n\t ], Tone.Vibrato.defaults);\n\t Tone.Effect.call(this, options);\n\t /**\n\t\t\t * The delay node used for the vibrato effect\n\t\t\t * @type {Tone.Delay}\n\t\t\t * @private\n\t\t\t */\n\t this._delayNode = new Tone.Delay(0, options.maxDelay);\n\t /**\n\t\t\t * The LFO used to control the vibrato\n\t\t\t * @type {Tone.LFO}\n\t\t\t * @private\n\t\t\t */\n\t this._lfo = new Tone.LFO({\n\t 'type': options.type,\n\t 'min': 0,\n\t 'max': options.maxDelay,\n\t 'frequency': options.frequency,\n\t 'phase': -90 //offse the phase so the resting position is in the center\n\t }).start().connect(this._delayNode.delayTime);\n\t /**\n\t\t\t * The frequency of the vibrato\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = this._lfo.frequency;\n\t /**\n\t\t\t * The depth of the vibrato. \n\t\t\t * @type {NormalRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.depth = this._lfo.amplitude;\n\t this.depth.value = options.depth;\n\t this._readOnly([\n\t 'frequency',\n\t 'depth'\n\t ]);\n\t this.effectSend.chain(this._delayNode, this.effectReturn);\n\t };\n\t Tone.extend(Tone.Vibrato, Tone.Effect);\n\t /**\n\t\t * The defaults\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.Vibrato.defaults = {\n\t 'maxDelay': 0.005,\n\t 'frequency': 5,\n\t 'depth': 0.1,\n\t 'type': 'sine'\n\t };\n\t /**\n\t\t * Type of oscillator attached to the Vibrato.\n\t\t * @memberOf Tone.Vibrato#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.Vibrato.prototype, 'type', {\n\t get: function () {\n\t return this._lfo.type;\n\t },\n\t set: function (type) {\n\t this._lfo.type = type;\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Vibrato} this\n\t\t */\n\t Tone.Vibrato.prototype.dispose = function () {\n\t Tone.Effect.prototype.dispose.call(this);\n\t this._delayNode.dispose();\n\t this._delayNode = null;\n\t this._lfo.dispose();\n\t this._lfo = null;\n\t this._writable([\n\t 'frequency',\n\t 'depth'\n\t ]);\n\t this.frequency = null;\n\t this.depth = null;\n\t };\n\t return Tone.Vibrato;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Event abstracts away Tone.Transport.schedule and provides a schedulable\n\t\t * callback for a single or repeatable events along the timeline. \n\t\t *\n\t\t * @extends {Tone}\n\t\t * @param {function} callback The callback to invoke at the time. \n\t\t * @param {*} value The value or values which should be passed to\n\t\t * the callback function on invocation. \n\t\t * @example\n\t\t * var chord = new Tone.Event(function(time, chord){\n\t\t * \t//the chord as well as the exact time of the event\n\t\t * \t//are passed in as arguments to the callback function\n\t\t * }, [\"D4\", \"E4\", \"F4\"]);\n\t\t * //start the chord at the beginning of the transport timeline\n\t\t * chord.start();\n\t\t * //loop it every measure for 8 measures\n\t\t * chord.loop = 8;\n\t\t * chord.loopEnd = \"1m\";\n\t\t */\n\t Tone.Event = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'callback',\n\t 'value'\n\t ], Tone.Event.defaults);\n\t /**\n\t\t\t * Loop value\n\t\t\t * @type {Boolean|Positive}\n\t\t\t * @private\n\t\t\t */\n\t this._loop = options.loop;\n\t /**\n\t\t\t * The callback to invoke. \n\t\t\t * @type {Function}\n\t\t\t */\n\t this.callback = options.callback;\n\t /**\n\t\t\t * The value which is passed to the\n\t\t\t * callback function.\n\t\t\t * @type {*}\n\t\t\t * @private\n\t\t\t */\n\t this.value = options.value;\n\t /**\n\t\t\t * When the note is scheduled to start.\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._loopStart = this.toTicks(options.loopStart);\n\t /**\n\t\t\t * When the note is scheduled to start.\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._loopEnd = this.toTicks(options.loopEnd);\n\t /**\n\t\t\t * Tracks the scheduled events\n\t\t\t * @type {Tone.TimelineState}\n\t\t\t * @private\n\t\t\t */\n\t this._state = new Tone.TimelineState(Tone.State.Stopped);\n\t /**\n\t\t\t * The playback speed of the note. A speed of 1\n\t\t\t * is no change. \n\t\t\t * @private\n\t\t\t * @type {Positive}\n\t\t\t */\n\t this._playbackRate = 1;\n\t /**\n\t\t\t * A delay time from when the event is scheduled to start\n\t\t\t * @type {Ticks}\n\t\t\t * @private\n\t\t\t */\n\t this._startOffset = 0;\n\t /**\n\t\t\t * The probability that the callback will be invoked\n\t\t\t * at the scheduled time. \n\t\t\t * @type {NormalRange}\n\t\t\t * @example\n\t\t\t * //the callback will be invoked 50% of the time\n\t\t\t * event.probability = 0.5;\n\t\t\t */\n\t this.probability = options.probability;\n\t /**\n\t\t\t * If set to true, will apply small (+/-0.02 seconds) random variation\n\t\t\t * to the callback time. If the value is given as a time, it will randomize\n\t\t\t * by that amount.\n\t\t\t * @example\n\t\t\t * event.humanize = true;\n\t\t\t * @type {Boolean|Time}\n\t\t\t */\n\t this.humanize = options.humanize;\n\t /**\n\t\t\t * If mute is true, the callback won't be\n\t\t\t * invoked.\n\t\t\t * @type {Boolean}\n\t\t\t */\n\t this.mute = options.mute;\n\t //set the initial values\n\t this.playbackRate = options.playbackRate;\n\t };\n\t Tone.extend(Tone.Event);\n\t /**\n\t\t * The default values\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.Event.defaults = {\n\t 'callback': Tone.noOp,\n\t 'loop': false,\n\t 'loopEnd': '1m',\n\t 'loopStart': 0,\n\t 'playbackRate': 1,\n\t 'value': null,\n\t 'probability': 1,\n\t 'mute': false,\n\t 'humanize': false\n\t };\n\t /**\n\t\t * Reschedule all of the events along the timeline\n\t\t * with the updated values.\n\t\t * @param {Time} after Only reschedules events after the given time.\n\t\t * @return {Tone.Event} this\n\t\t * @private\n\t\t */\n\t Tone.Event.prototype._rescheduleEvents = function (after) {\n\t //if no argument is given, schedules all of the events\n\t after = this.defaultArg(after, -1);\n\t this._state.forEachFrom(after, function (event) {\n\t var duration;\n\t if (event.state === Tone.State.Started) {\n\t if (!this.isUndef(event.id)) {\n\t Tone.Transport.clear(event.id);\n\t }\n\t var startTick = event.time + Math.round(this.startOffset / this._playbackRate);\n\t if (this._loop) {\n\t duration = Infinity;\n\t if (this.isNumber(this._loop)) {\n\t duration = this._loop * this._getLoopDuration();\n\t }\n\t var nextEvent = this._state.getAfter(startTick);\n\t if (nextEvent !== null) {\n\t duration = Math.min(duration, nextEvent.time - startTick);\n\t }\n\t if (duration !== Infinity) {\n\t //schedule a stop since it's finite duration\n\t this._state.setStateAtTime(Tone.State.Stopped, startTick + duration + 1);\n\t duration = Tone.Time(duration, 'i');\n\t }\n\t var interval = Tone.Time(this._getLoopDuration(), 'i');\n\t event.id = Tone.Transport.scheduleRepeat(this._tick.bind(this), interval, Tone.TransportTime(startTick, 'i'), duration);\n\t } else {\n\t event.id = Tone.Transport.schedule(this._tick.bind(this), startTick + 'i');\n\t }\n\t }\n\t }.bind(this));\n\t return this;\n\t };\n\t /**\n\t\t * Returns the playback state of the note, either \"started\" or \"stopped\".\n\t\t * @type {String}\n\t\t * @readOnly\n\t\t * @memberOf Tone.Event#\n\t\t * @name state\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'state', {\n\t get: function () {\n\t return this._state.getValueAtTime(Tone.Transport.ticks);\n\t }\n\t });\n\t /**\n\t\t * The start from the scheduled start time\n\t\t * @type {Ticks}\n\t\t * @memberOf Tone.Event#\n\t\t * @name startOffset\n\t\t * @private\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'startOffset', {\n\t get: function () {\n\t return this._startOffset;\n\t },\n\t set: function (offset) {\n\t this._startOffset = offset;\n\t }\n\t });\n\t /**\n\t\t * Start the note at the given time. \n\t\t * @param {TimelinePosition} time When the note should start.\n\t\t * @return {Tone.Event} this\n\t\t */\n\t Tone.Event.prototype.start = function (time) {\n\t time = this.toTicks(time);\n\t if (this._state.getValueAtTime(time) === Tone.State.Stopped) {\n\t this._state.add({\n\t 'state': Tone.State.Started,\n\t 'time': time,\n\t 'id': undefined\n\t });\n\t this._rescheduleEvents(time);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Stop the Event at the given time.\n\t\t * @param {TimelinePosition} time When the note should stop.\n\t\t * @return {Tone.Event} this\n\t\t */\n\t Tone.Event.prototype.stop = function (time) {\n\t this.cancel(time);\n\t time = this.toTicks(time);\n\t if (this._state.getValueAtTime(time) === Tone.State.Started) {\n\t this._state.setStateAtTime(Tone.State.Stopped, time);\n\t var previousEvent = this._state.getBefore(time);\n\t var reschedulTime = time;\n\t if (previousEvent !== null) {\n\t reschedulTime = previousEvent.time;\n\t }\n\t this._rescheduleEvents(reschedulTime);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Cancel all scheduled events greater than or equal to the given time\n\t\t * @param {TimelinePosition} [time=0] The time after which events will be cancel.\n\t\t * @return {Tone.Event} this\n\t\t */\n\t Tone.Event.prototype.cancel = function (time) {\n\t time = this.defaultArg(time, -Infinity);\n\t time = this.toTicks(time);\n\t this._state.forEachFrom(time, function (event) {\n\t Tone.Transport.clear(event.id);\n\t });\n\t this._state.cancel(time);\n\t return this;\n\t };\n\t /**\n\t\t * The callback function invoker. Also \n\t\t * checks if the Event is done playing\n\t\t * @param {Number} time The time of the event in seconds\n\t\t * @private\n\t\t */\n\t Tone.Event.prototype._tick = function (time) {\n\t if (!this.mute && this._state.getValueAtTime(Tone.Transport.ticks) === Tone.State.Started) {\n\t if (this.probability < 1 && Math.random() > this.probability) {\n\t return;\n\t }\n\t if (this.humanize) {\n\t var variation = 0.02;\n\t if (!this.isBoolean(this.humanize)) {\n\t variation = this.toSeconds(this.humanize);\n\t }\n\t time += (Math.random() * 2 - 1) * variation;\n\t }\n\t this.callback(time, this.value);\n\t }\n\t };\n\t /**\n\t\t * Get the duration of the loop.\n\t\t * @return {Ticks}\n\t\t * @private\n\t\t */\n\t Tone.Event.prototype._getLoopDuration = function () {\n\t return Math.round((this._loopEnd - this._loopStart) / this._playbackRate);\n\t };\n\t /**\n\t\t * If the note should loop or not\n\t\t * between Tone.Event.loopStart and \n\t\t * Tone.Event.loopEnd. An integer\n\t\t * value corresponds to the number of\n\t\t * loops the Event does after it starts.\n\t\t * @memberOf Tone.Event#\n\t\t * @type {Boolean|Positive}\n\t\t * @name loop\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'loop', {\n\t get: function () {\n\t return this._loop;\n\t },\n\t set: function (loop) {\n\t this._loop = loop;\n\t this._rescheduleEvents();\n\t }\n\t });\n\t /**\n\t\t * \tThe playback rate of the note. Defaults to 1.\n\t\t * @memberOf Tone.Event#\n\t\t * @type {Positive}\n\t\t * @name playbackRate\n\t\t * @example\n\t\t * note.loop = true;\n\t\t * //repeat the note twice as fast\n\t\t * note.playbackRate = 2;\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'playbackRate', {\n\t get: function () {\n\t return this._playbackRate;\n\t },\n\t set: function (rate) {\n\t this._playbackRate = rate;\n\t this._rescheduleEvents();\n\t }\n\t });\n\t /**\n\t\t * The loopEnd point is the time the event will loop\n\t\t * if Tone.Event.loop is true.\n\t\t * @memberOf Tone.Event#\n\t\t * @type {TransportTime}\n\t\t * @name loopEnd\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'loopEnd', {\n\t get: function () {\n\t return Tone.TransportTime(this._loopEnd, 'i').toNotation();\n\t },\n\t set: function (loopEnd) {\n\t this._loopEnd = this.toTicks(loopEnd);\n\t if (this._loop) {\n\t this._rescheduleEvents();\n\t }\n\t }\n\t });\n\t /**\n\t\t * The time when the loop should start. \n\t\t * @memberOf Tone.Event#\n\t\t * @type {TransportTime}\n\t\t * @name loopStart\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'loopStart', {\n\t get: function () {\n\t return Tone.TransportTime(this._loopStart, 'i').toNotation();\n\t },\n\t set: function (loopStart) {\n\t this._loopStart = this.toTicks(loopStart);\n\t if (this._loop) {\n\t this._rescheduleEvents();\n\t }\n\t }\n\t });\n\t /**\n\t\t * The current progress of the loop interval.\n\t\t * Returns 0 if the event is not started yet or\n\t\t * it is not set to loop.\n\t\t * @memberOf Tone.Event#\n\t\t * @type {NormalRange}\n\t\t * @name progress\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Event.prototype, 'progress', {\n\t get: function () {\n\t if (this._loop) {\n\t var ticks = Tone.Transport.ticks;\n\t var lastEvent = this._state.get(ticks);\n\t if (lastEvent !== null && lastEvent.state === Tone.State.Started) {\n\t var loopDuration = this._getLoopDuration();\n\t var progress = (ticks - lastEvent.time) % loopDuration;\n\t return progress / loopDuration;\n\t } else {\n\t return 0;\n\t }\n\t } else {\n\t return 0;\n\t }\n\t }\n\t });\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.Event} this\n\t\t */\n\t Tone.Event.prototype.dispose = function () {\n\t this.cancel();\n\t this._state.dispose();\n\t this._state = null;\n\t this.callback = null;\n\t this.value = null;\n\t };\n\t return Tone.Event;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Tone.Loop creates a looped callback at the \n\t\t * specified interval. The callback can be \n\t\t * started, stopped and scheduled along\n\t\t * the Transport's timeline. \n\t\t * @example\n\t\t * var loop = new Tone.Loop(function(time){\n\t\t * \t//triggered every eighth note. \n\t\t * \tconsole.log(time);\n\t\t * }, \"8n\").start(0);\n\t\t * Tone.Transport.start();\n\t\t * @extends {Tone}\n\t\t * @param {Function} callback The callback to invoke with the event.\n\t\t * @param {Time} interval The time between successive callback calls. \n\t\t */\n\t Tone.Loop = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'callback',\n\t 'interval'\n\t ], Tone.Loop.defaults);\n\t /**\n\t\t\t * The event which produces the callbacks\n\t\t\t */\n\t this._event = new Tone.Event({\n\t 'callback': this._tick.bind(this),\n\t 'loop': true,\n\t 'loopEnd': options.interval,\n\t 'playbackRate': options.playbackRate,\n\t 'probability': options.probability\n\t });\n\t /**\n\t\t\t * The callback to invoke with the next event in the pattern\n\t\t\t * @type {Function}\n\t\t\t */\n\t this.callback = options.callback;\n\t //set the iterations\n\t this.iterations = options.iterations;\n\t };\n\t Tone.extend(Tone.Loop);\n\t /**\n\t\t * The defaults\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Loop.defaults = {\n\t 'interval': '4n',\n\t 'callback': Tone.noOp,\n\t 'playbackRate': 1,\n\t 'iterations': Infinity,\n\t 'probability': true,\n\t 'mute': false\n\t };\n\t /**\n\t\t * Start the loop at the specified time along the Transport's\n\t\t * timeline.\n\t\t * @param {TimelinePosition=} time When to start the Loop.\n\t\t * @return {Tone.Loop} this\n\t\t */\n\t Tone.Loop.prototype.start = function (time) {\n\t this._event.start(time);\n\t return this;\n\t };\n\t /**\n\t\t * Stop the loop at the given time.\n\t\t * @param {TimelinePosition=} time When to stop the Arpeggio\n\t\t * @return {Tone.Loop} this\n\t\t */\n\t Tone.Loop.prototype.stop = function (time) {\n\t this._event.stop(time);\n\t return this;\n\t };\n\t /**\n\t\t * Cancel all scheduled events greater than or equal to the given time\n\t\t * @param {TimelinePosition} [time=0] The time after which events will be cancel.\n\t\t * @return {Tone.Loop} this\n\t\t */\n\t Tone.Loop.prototype.cancel = function (time) {\n\t this._event.cancel(time);\n\t return this;\n\t };\n\t /**\n\t\t * Internal function called when the notes should be called\n\t\t * @param {Number} time The time the event occurs\n\t\t * @private\n\t\t */\n\t Tone.Loop.prototype._tick = function (time) {\n\t this.callback(time);\n\t };\n\t /**\n\t\t * The state of the Loop, either started or stopped.\n\t\t * @memberOf Tone.Loop#\n\t\t * @type {String}\n\t\t * @name state\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'state', {\n\t get: function () {\n\t return this._event.state;\n\t }\n\t });\n\t /**\n\t\t * The progress of the loop as a value between 0-1. 0, when\n\t\t * the loop is stopped or done iterating. \n\t\t * @memberOf Tone.Loop#\n\t\t * @type {NormalRange}\n\t\t * @name progress\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'progress', {\n\t get: function () {\n\t return this._event.progress;\n\t }\n\t });\n\t /**\n\t\t * The time between successive callbacks. \n\t\t * @example\n\t\t * loop.interval = \"8n\"; //loop every 8n\n\t\t * @memberOf Tone.Loop#\n\t\t * @type {Time}\n\t\t * @name interval\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'interval', {\n\t get: function () {\n\t return this._event.loopEnd;\n\t },\n\t set: function (interval) {\n\t this._event.loopEnd = interval;\n\t }\n\t });\n\t /**\n\t\t * The playback rate of the loop. The normal playback rate is 1 (no change). \n\t\t * A `playbackRate` of 2 would be twice as fast. \n\t\t * @memberOf Tone.Loop#\n\t\t * @type {Time}\n\t\t * @name playbackRate\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'playbackRate', {\n\t get: function () {\n\t return this._event.playbackRate;\n\t },\n\t set: function (rate) {\n\t this._event.playbackRate = rate;\n\t }\n\t });\n\t /**\n\t\t * Random variation +/-0.01s to the scheduled time. \n\t\t * Or give it a time value which it will randomize by.\n\t\t * @type {Boolean|Time}\n\t\t * @memberOf Tone.Loop#\n\t\t * @name humanize\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'humanize', {\n\t get: function () {\n\t return this._event.humanize;\n\t },\n\t set: function (variation) {\n\t this._event.humanize = variation;\n\t }\n\t });\n\t /**\n\t\t * The probably of the callback being invoked.\n\t\t * @memberOf Tone.Loop#\n\t\t * @type {NormalRange}\n\t\t * @name probability\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'probability', {\n\t get: function () {\n\t return this._event.probability;\n\t },\n\t set: function (prob) {\n\t this._event.probability = prob;\n\t }\n\t });\n\t /**\n\t\t * Muting the Loop means that no callbacks are invoked.\n\t\t * @memberOf Tone.Loop#\n\t\t * @type {Boolean}\n\t\t * @name mute\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'mute', {\n\t get: function () {\n\t return this._event.mute;\n\t },\n\t set: function (mute) {\n\t this._event.mute = mute;\n\t }\n\t });\n\t /**\n\t\t * The number of iterations of the loop. The default\n\t\t * value is Infinity (loop forever).\n\t\t * @memberOf Tone.Loop#\n\t\t * @type {Positive}\n\t\t * @name iterations\n\t\t */\n\t Object.defineProperty(Tone.Loop.prototype, 'iterations', {\n\t get: function () {\n\t if (this._event.loop === true) {\n\t return Infinity;\n\t } else {\n\t return this._event.loop;\n\t }\n\t return this._pattern.index;\n\t },\n\t set: function (iters) {\n\t if (iters === Infinity) {\n\t this._event.loop = true;\n\t } else {\n\t this._event.loop = iters;\n\t }\n\t }\n\t });\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.Loop} this\n\t\t */\n\t Tone.Loop.prototype.dispose = function () {\n\t this._event.dispose();\n\t this._event = null;\n\t this.callback = null;\n\t };\n\t return Tone.Loop;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Part is a collection Tone.Events which can be\n\t\t * started/stoped and looped as a single unit.\n\t\t *\n\t\t * @extends {Tone.Event}\n\t\t * @param {Function} callback The callback to invoke on each event\n\t\t * @param {Array} events the array of events\n\t\t * @example\n\t\t * var part = new Tone.Part(function(time, note){\n\t\t * \t//the notes given as the second element in the array\n\t\t * \t//will be passed in as the second argument\n\t\t * \tsynth.triggerAttackRelease(note, \"8n\", time);\n\t\t * }, [[0, \"C2\"], [\"0:2\", \"C3\"], [\"0:3:2\", \"G2\"]]);\n\t\t * @example\n\t\t * //use an array of objects as long as the object has a \"time\" attribute\n\t\t * var part = new Tone.Part(function(time, value){\n\t\t * \t//the value is an object which contains both the note and the velocity\n\t\t * \tsynth.triggerAttackRelease(value.note, \"8n\", time, value.velocity);\n\t\t * }, [{\"time\" : 0, \"note\" : \"C3\", \"velocity\": 0.9}, \n\t\t * \t {\"time\" : \"0:2\", \"note\" : \"C4\", \"velocity\": 0.5}\n\t\t * ]).start(0);\n\t\t */\n\t Tone.Part = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'callback',\n\t 'events'\n\t ], Tone.Part.defaults);\n\t /**\n\t\t\t * If the part is looping or not\n\t\t\t * @type {Boolean|Positive}\n\t\t\t * @private\n\t\t\t */\n\t this._loop = options.loop;\n\t /**\n\t\t\t * When the note is scheduled to start.\n\t\t\t * @type {Ticks}\n\t\t\t * @private\n\t\t\t */\n\t this._loopStart = this.toTicks(options.loopStart);\n\t /**\n\t\t\t * When the note is scheduled to start.\n\t\t\t * @type {Ticks}\n\t\t\t * @private\n\t\t\t */\n\t this._loopEnd = this.toTicks(options.loopEnd);\n\t /**\n\t\t\t * The playback rate of the part\n\t\t\t * @type {Positive}\n\t\t\t * @private\n\t\t\t */\n\t this._playbackRate = options.playbackRate;\n\t /**\n\t\t\t * private holder of probability value\n\t\t\t * @type {NormalRange}\n\t\t\t * @private\n\t\t\t */\n\t this._probability = options.probability;\n\t /**\n\t\t\t * the amount of variation from the\n\t\t\t * given time. \n\t\t\t * @type {Boolean|Time}\n\t\t\t * @private\n\t\t\t */\n\t this._humanize = options.humanize;\n\t /**\n\t\t\t * The start offset\n\t\t\t * @type {Ticks}\n\t\t\t * @private\n\t\t\t */\n\t this._startOffset = 0;\n\t /**\n\t\t\t * Keeps track of the current state\n\t\t\t * @type {Tone.TimelineState}\n\t\t\t * @private\n\t\t\t */\n\t this._state = new Tone.TimelineState(Tone.State.Stopped);\n\t /**\n\t\t\t * An array of Objects. \n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._events = [];\n\t /**\n\t\t\t * The callback to invoke at all the scheduled events.\n\t\t\t * @type {Function}\n\t\t\t */\n\t this.callback = options.callback;\n\t /**\n\t\t\t * If mute is true, the callback won't be\n\t\t\t * invoked.\n\t\t\t * @type {Boolean}\n\t\t\t */\n\t this.mute = options.mute;\n\t //add the events\n\t var events = this.defaultArg(options.events, []);\n\t if (!this.isUndef(options.events)) {\n\t for (var i = 0; i < events.length; i++) {\n\t if (Array.isArray(events[i])) {\n\t this.add(events[i][0], events[i][1]);\n\t } else {\n\t this.add(events[i]);\n\t }\n\t }\n\t }\n\t };\n\t Tone.extend(Tone.Part, Tone.Event);\n\t /**\n\t\t * The default values\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.Part.defaults = {\n\t 'callback': Tone.noOp,\n\t 'loop': false,\n\t 'loopEnd': '1m',\n\t 'loopStart': 0,\n\t 'playbackRate': 1,\n\t 'probability': 1,\n\t 'humanize': false,\n\t 'mute': false\n\t };\n\t /**\n\t\t * Start the part at the given time. \n\t\t * @param {TransportTime} time When to start the part.\n\t\t * @param {Time=} offset The offset from the start of the part\n\t\t * to begin playing at.\n\t\t * @return {Tone.Part} this\n\t\t */\n\t Tone.Part.prototype.start = function (time, offset) {\n\t var ticks = this.toTicks(time);\n\t if (this._state.getValueAtTime(ticks) !== Tone.State.Started) {\n\t if (this._loop) {\n\t offset = this.defaultArg(offset, this._loopStart);\n\t } else {\n\t offset = this.defaultArg(offset, 0);\n\t }\n\t offset = this.toTicks(offset);\n\t this._state.add({\n\t 'state': Tone.State.Started,\n\t 'time': ticks,\n\t 'offset': offset\n\t });\n\t this._forEach(function (event) {\n\t this._startNote(event, ticks, offset);\n\t });\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Start the event in the given event at the correct time given\n\t\t * the ticks and offset and looping.\n\t\t * @param {Tone.Event} event \n\t\t * @param {Ticks} ticks\n\t\t * @param {Ticks} offset\n\t\t * @private\n\t\t */\n\t Tone.Part.prototype._startNote = function (event, ticks, offset) {\n\t ticks -= offset;\n\t if (this._loop) {\n\t if (event.startOffset >= this._loopStart && event.startOffset < this._loopEnd) {\n\t if (event.startOffset < offset) {\n\t //start it on the next loop\n\t ticks += this._getLoopDuration();\n\t }\n\t event.start(Tone.TransportTime(ticks, 'i'));\n\t } else if (event.startOffset < this._loopStart && event.startOffset >= offset) {\n\t event.loop = false;\n\t event.start(Tone.TransportTime(ticks, 'i'));\n\t }\n\t } else {\n\t if (event.startOffset >= offset) {\n\t event.start(Tone.TransportTime(ticks, 'i'));\n\t }\n\t }\n\t };\n\t /**\n\t\t * The start from the scheduled start time\n\t\t * @type {Ticks}\n\t\t * @memberOf Tone.Part#\n\t\t * @name startOffset\n\t\t * @private\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'startOffset', {\n\t get: function () {\n\t return this._startOffset;\n\t },\n\t set: function (offset) {\n\t this._startOffset = offset;\n\t this._forEach(function (event) {\n\t event.startOffset += this._startOffset;\n\t });\n\t }\n\t });\n\t /**\n\t\t * Stop the part at the given time.\n\t\t * @param {TimelinePosition} time When to stop the part.\n\t\t * @return {Tone.Part} this\n\t\t */\n\t Tone.Part.prototype.stop = function (time) {\n\t var ticks = this.toTicks(time);\n\t this._state.cancel(ticks);\n\t this._state.setStateAtTime(Tone.State.Stopped, ticks);\n\t this._forEach(function (event) {\n\t event.stop(time);\n\t });\n\t return this;\n\t };\n\t /**\n\t\t * Get/Set an Event's value at the given time. \n\t\t * If a value is passed in and no event exists at\n\t\t * the given time, one will be created with that value. \n\t\t * If two events are at the same time, the first one will\n\t\t * be returned.\n\t\t * @example\n\t\t * part.at(\"1m\"); //returns the part at the first measure\n\t\t *\n\t\t * part.at(\"2m\", \"C2\"); //set the value at \"2m\" to C2. \n\t\t * //if an event didn't exist at that time, it will be created.\n\t\t * @param {TransportTime} time The time of the event to get or set.\n\t\t * @param {*=} value If a value is passed in, the value of the\n\t\t * event at the given time will be set to it.\n\t\t * @return {Tone.Event} the event at the time\n\t\t */\n\t Tone.Part.prototype.at = function (time, value) {\n\t time = Tone.TransportTime(time);\n\t var tickTime = Tone.Time(1, 'i').toSeconds();\n\t for (var i = 0; i < this._events.length; i++) {\n\t var event = this._events[i];\n\t if (Math.abs(time.toTicks() - event.startOffset) < tickTime) {\n\t if (!this.isUndef(value)) {\n\t event.value = value;\n\t }\n\t return event;\n\t }\n\t }\n\t //if there was no event at that time, create one\n\t if (!this.isUndef(value)) {\n\t this.add(time, value);\n\t //return the new event\n\t return this._events[this._events.length - 1];\n\t } else {\n\t return null;\n\t }\n\t };\n\t /**\n\t\t * Add a an event to the part. \n\t\t * @param {Time} time The time the note should start.\n\t\t * If an object is passed in, it should\n\t\t * have a 'time' attribute and the rest\n\t\t * of the object will be used as the 'value'.\n\t\t * @param {Tone.Event|*} value \n\t\t * @returns {Tone.Part} this\n\t\t * @example\n\t\t * part.add(\"1m\", \"C#+11\");\n\t\t */\n\t Tone.Part.prototype.add = function (time, value) {\n\t //extract the parameters\n\t if (time.hasOwnProperty('time')) {\n\t value = time;\n\t time = value.time;\n\t }\n\t time = this.toTicks(time);\n\t var event;\n\t if (value instanceof Tone.Event) {\n\t event = value;\n\t event.callback = this._tick.bind(this);\n\t } else {\n\t event = new Tone.Event({\n\t 'callback': this._tick.bind(this),\n\t 'value': value\n\t });\n\t }\n\t //the start offset\n\t event.startOffset = time;\n\t //initialize the values\n\t event.set({\n\t 'loopEnd': this.loopEnd,\n\t 'loopStart': this.loopStart,\n\t 'loop': this.loop,\n\t 'humanize': this.humanize,\n\t 'playbackRate': this.playbackRate,\n\t 'probability': this.probability\n\t });\n\t this._events.push(event);\n\t //start the note if it should be played right now\n\t this._restartEvent(event);\n\t return this;\n\t };\n\t /**\n\t\t * Restart the given event\n\t\t * @param {Tone.Event} event \n\t\t * @private\n\t\t */\n\t Tone.Part.prototype._restartEvent = function (event) {\n\t this._state.forEach(function (stateEvent) {\n\t if (stateEvent.state === Tone.State.Started) {\n\t this._startNote(event, stateEvent.time, stateEvent.offset);\n\t } else {\n\t //stop the note\n\t event.stop(Tone.TransportTime(stateEvent.time, 'i'));\n\t }\n\t }.bind(this));\n\t };\n\t /**\n\t\t * Remove an event from the part. Will recursively iterate\n\t\t * into nested parts to find the event.\n\t\t * @param {Time} time The time of the event\n\t\t * @param {*} value Optionally select only a specific event value\n\t\t * @return {Tone.Part} this\n\t\t */\n\t Tone.Part.prototype.remove = function (time, value) {\n\t //extract the parameters\n\t if (time.hasOwnProperty('time')) {\n\t value = time;\n\t time = value.time;\n\t }\n\t time = this.toTicks(time);\n\t for (var i = this._events.length - 1; i >= 0; i--) {\n\t var event = this._events[i];\n\t if (event instanceof Tone.Part) {\n\t event.remove(time, value);\n\t } else {\n\t if (event.startOffset === time) {\n\t if (this.isUndef(value) || !this.isUndef(value) && event.value === value) {\n\t this._events.splice(i, 1);\n\t event.dispose();\n\t }\n\t }\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Remove all of the notes from the group. \n\t\t * @return {Tone.Part} this\n\t\t */\n\t Tone.Part.prototype.removeAll = function () {\n\t this._forEach(function (event) {\n\t event.dispose();\n\t });\n\t this._events = [];\n\t return this;\n\t };\n\t /**\n\t\t * Cancel scheduled state change events: i.e. \"start\" and \"stop\".\n\t\t * @param {TimelinePosition} after The time after which to cancel the scheduled events.\n\t\t * @return {Tone.Part} this\n\t\t */\n\t Tone.Part.prototype.cancel = function (after) {\n\t after = this.toTicks(after);\n\t this._forEach(function (event) {\n\t event.cancel(after);\n\t });\n\t this._state.cancel(after);\n\t return this;\n\t };\n\t /**\n\t\t * Iterate over all of the events\n\t\t * @param {Function} callback\n\t\t * @param {Object} ctx The context\n\t\t * @private\n\t\t */\n\t Tone.Part.prototype._forEach = function (callback, ctx) {\n\t ctx = this.defaultArg(ctx, this);\n\t for (var i = this._events.length - 1; i >= 0; i--) {\n\t var e = this._events[i];\n\t if (e instanceof Tone.Part) {\n\t e._forEach(callback, ctx);\n\t } else {\n\t callback.call(ctx, e);\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Set the attribute of all of the events\n\t\t * @param {String} attr the attribute to set\n\t\t * @param {*} value The value to set it to\n\t\t * @private\n\t\t */\n\t Tone.Part.prototype._setAll = function (attr, value) {\n\t this._forEach(function (event) {\n\t event[attr] = value;\n\t });\n\t };\n\t /**\n\t\t * Internal tick method\n\t\t * @param {Number} time The time of the event in seconds\n\t\t * @private\n\t\t */\n\t Tone.Part.prototype._tick = function (time, value) {\n\t if (!this.mute) {\n\t this.callback(time, value);\n\t }\n\t };\n\t /**\n\t\t * Determine if the event should be currently looping\n\t\t * given the loop boundries of this Part.\n\t\t * @param {Tone.Event} event The event to test\n\t\t * @private\n\t\t */\n\t Tone.Part.prototype._testLoopBoundries = function (event) {\n\t if (event.startOffset < this._loopStart || event.startOffset >= this._loopEnd) {\n\t event.cancel(0);\n\t } else {\n\t //reschedule it if it's stopped\n\t if (event.state === Tone.State.Stopped) {\n\t this._restartEvent(event);\n\t }\n\t }\n\t };\n\t /**\n\t\t * The probability of the notes being triggered.\n\t\t * @memberOf Tone.Part#\n\t\t * @type {NormalRange}\n\t\t * @name probability\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'probability', {\n\t get: function () {\n\t return this._probability;\n\t },\n\t set: function (prob) {\n\t this._probability = prob;\n\t this._setAll('probability', prob);\n\t }\n\t });\n\t /**\n\t\t * If set to true, will apply small random variation\n\t\t * to the callback time. If the value is given as a time, it will randomize\n\t\t * by that amount.\n\t\t * @example\n\t\t * event.humanize = true;\n\t\t * @type {Boolean|Time}\n\t\t * @name humanize\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'humanize', {\n\t get: function () {\n\t return this._humanize;\n\t },\n\t set: function (variation) {\n\t this._humanize = variation;\n\t this._setAll('humanize', variation);\n\t }\n\t });\n\t /**\n\t\t * If the part should loop or not\n\t\t * between Tone.Part.loopStart and \n\t\t * Tone.Part.loopEnd. An integer\n\t\t * value corresponds to the number of\n\t\t * loops the Part does after it starts.\n\t\t * @memberOf Tone.Part#\n\t\t * @type {Boolean|Positive}\n\t\t * @name loop\n\t\t * @example\n\t\t * //loop the part 8 times\n\t\t * part.loop = 8;\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'loop', {\n\t get: function () {\n\t return this._loop;\n\t },\n\t set: function (loop) {\n\t this._loop = loop;\n\t this._forEach(function (event) {\n\t event._loopStart = this._loopStart;\n\t event._loopEnd = this._loopEnd;\n\t event.loop = loop;\n\t this._testLoopBoundries(event);\n\t });\n\t }\n\t });\n\t /**\n\t\t * The loopEnd point determines when it will \n\t\t * loop if Tone.Part.loop is true.\n\t\t * @memberOf Tone.Part#\n\t\t * @type {TransportTime}\n\t\t * @name loopEnd\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'loopEnd', {\n\t get: function () {\n\t return Tone.TransportTime(this._loopEnd, 'i').toNotation();\n\t },\n\t set: function (loopEnd) {\n\t this._loopEnd = this.toTicks(loopEnd);\n\t if (this._loop) {\n\t this._forEach(function (event) {\n\t event.loopEnd = loopEnd;\n\t this._testLoopBoundries(event);\n\t });\n\t }\n\t }\n\t });\n\t /**\n\t\t * The loopStart point determines when it will \n\t\t * loop if Tone.Part.loop is true.\n\t\t * @memberOf Tone.Part#\n\t\t * @type {TransportTime}\n\t\t * @name loopStart\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'loopStart', {\n\t get: function () {\n\t return Tone.TransportTime(this._loopStart, 'i').toNotation();\n\t },\n\t set: function (loopStart) {\n\t this._loopStart = this.toTicks(loopStart);\n\t if (this._loop) {\n\t this._forEach(function (event) {\n\t event.loopStart = this.loopStart;\n\t this._testLoopBoundries(event);\n\t });\n\t }\n\t }\n\t });\n\t /**\n\t\t * \tThe playback rate of the part\n\t\t * @memberOf Tone.Part#\n\t\t * @type {Positive}\n\t\t * @name playbackRate\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'playbackRate', {\n\t get: function () {\n\t return this._playbackRate;\n\t },\n\t set: function (rate) {\n\t this._playbackRate = rate;\n\t this._setAll('playbackRate', rate);\n\t }\n\t });\n\t /**\n\t\t * \tThe number of scheduled notes in the part. \n\t\t * @memberOf Tone.Part#\n\t\t * @type {Positive}\n\t\t * @name length\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Part.prototype, 'length', {\n\t get: function () {\n\t return this._events.length;\n\t }\n\t });\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.Part} this\n\t\t */\n\t Tone.Part.prototype.dispose = function () {\n\t this.removeAll();\n\t this._state.dispose();\n\t this._state = null;\n\t this.callback = null;\n\t this._events = null;\n\t return this;\n\t };\n\t return Tone.Part;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * @class Tone.Pattern arpeggiates between the given notes\n\t\t * in a number of patterns. See Tone.CtrlPattern for\n\t\t * a full list of patterns.\n\t\t * @example\n\t\t * var pattern = new Tone.Pattern(function(time, note){\n\t\t * //the order of the notes passed in depends on the pattern\n\t\t * }, [\"C2\", \"D4\", \"E5\", \"A6\"], \"upDown\");\n\t\t * @extends {Tone.Loop}\n\t\t * @param {Function} callback The callback to invoke with the\n\t\t * event.\n\t\t * @param {Array} values The values to arpeggiate over.\n\t\t */\n\t Tone.Pattern = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'callback',\n\t 'values',\n\t 'pattern'\n\t ], Tone.Pattern.defaults);\n\t Tone.Loop.call(this, options);\n\t /**\n\t\t\t * The pattern manager\n\t\t\t * @type {Tone.CtrlPattern}\n\t\t\t * @private\n\t\t\t */\n\t this._pattern = new Tone.CtrlPattern({\n\t 'values': options.values,\n\t 'type': options.pattern,\n\t 'index': options.index\n\t });\n\t };\n\t Tone.extend(Tone.Pattern, Tone.Loop);\n\t /**\n\t\t * The defaults\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Pattern.defaults = {\n\t 'pattern': Tone.CtrlPattern.Type.Up,\n\t 'values': []\n\t };\n\t /**\n\t\t * Internal function called when the notes should be called\n\t\t * @param {Number} time The time the event occurs\n\t\t * @private\n\t\t */\n\t Tone.Pattern.prototype._tick = function (time) {\n\t this.callback(time, this._pattern.value);\n\t this._pattern.next();\n\t };\n\t /**\n\t\t * The current index in the values array.\n\t\t * @memberOf Tone.Pattern#\n\t\t * @type {Positive}\n\t\t * @name index\n\t\t */\n\t Object.defineProperty(Tone.Pattern.prototype, 'index', {\n\t get: function () {\n\t return this._pattern.index;\n\t },\n\t set: function (i) {\n\t this._pattern.index = i;\n\t }\n\t });\n\t /**\n\t\t * The array of events.\n\t\t * @memberOf Tone.Pattern#\n\t\t * @type {Array}\n\t\t * @name values\n\t\t */\n\t Object.defineProperty(Tone.Pattern.prototype, 'values', {\n\t get: function () {\n\t return this._pattern.values;\n\t },\n\t set: function (vals) {\n\t this._pattern.values = vals;\n\t }\n\t });\n\t /**\n\t\t * The current value of the pattern.\n\t\t * @memberOf Tone.Pattern#\n\t\t * @type {*}\n\t\t * @name value\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Pattern.prototype, 'value', {\n\t get: function () {\n\t return this._pattern.value;\n\t }\n\t });\n\t /**\n\t\t * The pattern type. See Tone.CtrlPattern for the full list of patterns.\n\t\t * @memberOf Tone.Pattern#\n\t\t * @type {String}\n\t\t * @name pattern\n\t\t */\n\t Object.defineProperty(Tone.Pattern.prototype, 'pattern', {\n\t get: function () {\n\t return this._pattern.type;\n\t },\n\t set: function (pattern) {\n\t this._pattern.type = pattern;\n\t }\n\t });\n\t /**\n\t\t * Clean up\n\t\t * @return {Tone.Pattern} this\n\t\t */\n\t Tone.Pattern.prototype.dispose = function () {\n\t Tone.Loop.prototype.dispose.call(this);\n\t this._pattern.dispose();\n\t this._pattern = null;\n\t };\n\t return Tone.Pattern;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class A sequence is an alternate notation of a part. Instead\n\t\t * of passing in an array of [time, event] pairs, pass\n\t\t * in an array of events which will be spaced at the\n\t\t * given subdivision. Sub-arrays will subdivide that beat\n\t\t * by the number of items are in the array. \n\t\t * Sequence notation inspiration from [Tidal](http://yaxu.org/tidal/)\n\t\t * @param {Function} callback The callback to invoke with every note\n\t\t * @param {Array} events The sequence\n\t\t * @param {Time} subdivision The subdivision between which events are placed. \n\t\t * @extends {Tone.Part}\n\t\t * @example\n\t\t * var seq = new Tone.Sequence(function(time, note){\n\t\t * \tconsole.log(note);\n\t\t * //straight quater notes\n\t\t * }, [\"C4\", \"E4\", \"G4\", \"A4\"], \"4n\");\n\t\t * @example\n\t\t * var seq = new Tone.Sequence(function(time, note){\n\t\t * \tconsole.log(note);\n\t\t * //subdivisions are given as subarrays\n\t\t * }, [\"C4\", [\"E4\", \"D4\", \"E4\"], \"G4\", [\"A4\", \"G4\"]]);\n\t\t */\n\t Tone.Sequence = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'callback',\n\t 'events',\n\t 'subdivision'\n\t ], Tone.Sequence.defaults);\n\t //remove the events\n\t var events = options.events;\n\t delete options.events;\n\t Tone.Part.call(this, options);\n\t /**\n\t\t\t * The subdivison of each note\n\t\t\t * @type {Ticks}\n\t\t\t * @private\n\t\t\t */\n\t this._subdivision = this.toTicks(options.subdivision);\n\t //if no time was passed in, the loop end is the end of the cycle\n\t if (this.isUndef(options.loopEnd) && !this.isUndef(events)) {\n\t this._loopEnd = events.length * this._subdivision;\n\t }\n\t //defaults to looping\n\t this._loop = true;\n\t //add all of the events\n\t if (!this.isUndef(events)) {\n\t for (var i = 0; i < events.length; i++) {\n\t this.add(i, events[i]);\n\t }\n\t }\n\t };\n\t Tone.extend(Tone.Sequence, Tone.Part);\n\t /**\n\t\t * The default values.\n\t\t * @type {Object}\n\t\t */\n\t Tone.Sequence.defaults = { 'subdivision': '4n' };\n\t /**\n\t\t * The subdivision of the sequence. This can only be \n\t\t * set in the constructor. The subdivision is the \n\t\t * interval between successive steps. \n\t\t * @type {Time}\n\t\t * @memberOf Tone.Sequence#\n\t\t * @name subdivision\n\t\t * @readOnly\n\t\t */\n\t Object.defineProperty(Tone.Sequence.prototype, 'subdivision', {\n\t get: function () {\n\t return Tone.Time(this._subdivision, 'i').toNotation();\n\t }\n\t });\n\t /**\n\t\t * Get/Set an index of the sequence. If the index contains a subarray, \n\t\t * a Tone.Sequence representing that sub-array will be returned. \n\t\t * @example\n\t\t * var sequence = new Tone.Sequence(playNote, [\"E4\", \"C4\", \"F#4\", [\"A4\", \"Bb3\"]])\n\t\t * sequence.at(0)// => returns \"E4\"\n\t\t * //set a value\n\t\t * sequence.at(0, \"G3\");\n\t\t * //get a nested sequence\n\t\t * sequence.at(3).at(1)// => returns \"Bb3\"\n\t\t * @param {Positive} index The index to get or set\n\t\t * @param {*} value Optionally pass in the value to set at the given index.\n\t\t */\n\t Tone.Sequence.prototype.at = function (index, value) {\n\t //if the value is an array, \n\t if (this.isArray(value)) {\n\t //remove the current event at that index\n\t this.remove(index);\n\t }\n\t //call the parent's method\n\t return Tone.Part.prototype.at.call(this, this._indexTime(index), value);\n\t };\n\t /**\n\t\t * Add an event at an index, if there's already something\n\t\t * at that index, overwrite it. If `value` is an array, \n\t\t * it will be parsed as a subsequence.\n\t\t * @param {Number} index The index to add the event to\n\t\t * @param {*} value The value to add at that index\n\t\t * @returns {Tone.Sequence} this\n\t\t */\n\t Tone.Sequence.prototype.add = function (index, value) {\n\t if (value === null) {\n\t return this;\n\t }\n\t if (this.isArray(value)) {\n\t //make a subsequence and add that to the sequence\n\t var subSubdivision = Math.round(this._subdivision / value.length);\n\t value = new Tone.Sequence(this._tick.bind(this), value, Tone.Time(subSubdivision, 'i'));\n\t }\n\t Tone.Part.prototype.add.call(this, this._indexTime(index), value);\n\t return this;\n\t };\n\t /**\n\t\t * Remove a value from the sequence by index\n\t\t * @param {Number} index The index of the event to remove\n\t\t * @returns {Tone.Sequence} this\n\t\t */\n\t Tone.Sequence.prototype.remove = function (index, value) {\n\t Tone.Part.prototype.remove.call(this, this._indexTime(index), value);\n\t return this;\n\t };\n\t /**\n\t\t * Get the time of the index given the Sequence's subdivision\n\t\t * @param {Number} index \n\t\t * @return {Time} The time of that index\n\t\t * @private\n\t\t */\n\t Tone.Sequence.prototype._indexTime = function (index) {\n\t if (index instanceof Tone.TransportTime) {\n\t return index;\n\t } else {\n\t return Tone.TransportTime(index * this._subdivision + this.startOffset, 'i');\n\t }\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.Sequence} this\n\t\t */\n\t Tone.Sequence.prototype.dispose = function () {\n\t Tone.Part.prototype.dispose.call(this);\n\t return this;\n\t };\n\t return Tone.Sequence;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.PulseOscillator is a pulse oscillator with control over pulse width,\n\t\t * also known as the duty cycle. At 50% duty cycle (width = 0.5) the wave is \n\t\t * a square and only odd-numbered harmonics are present. At all other widths \n\t\t * even-numbered harmonics are present. Read more \n\t\t * [here](https://wigglewave.wordpress.com/2014/08/16/pulse-waveforms-and-harmonics/).\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.Oscillator}\n\t\t * @param {Frequency} [frequency] The frequency of the oscillator\n\t\t * @param {NormalRange} [width] The width of the pulse\n\t\t * @example\n\t\t * var pulse = new Tone.PulseOscillator(\"E5\", 0.4).toMaster().start();\n\t\t */\n\t Tone.PulseOscillator = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'width'\n\t ], Tone.Oscillator.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * The width of the pulse. \n\t\t\t * @type {NormalRange}\n\t\t\t * @signal\n\t\t\t */\n\t this.width = new Tone.Signal(options.width, Tone.Type.NormalRange);\n\t /**\n\t\t\t * gate the width amount\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._widthGate = new Tone.Gain();\n\t /**\n\t\t\t * the sawtooth oscillator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._sawtooth = new Tone.Oscillator({\n\t frequency: options.frequency,\n\t detune: options.detune,\n\t type: 'sawtooth',\n\t phase: options.phase\n\t });\n\t /**\n\t\t\t * The frequency control.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = this._sawtooth.frequency;\n\t /**\n\t\t\t * The detune in cents. \n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = this._sawtooth.detune;\n\t /**\n\t\t\t * Threshold the signal to turn it into a square\n\t\t\t * @type {Tone.WaveShaper}\n\t\t\t * @private\n\t\t\t */\n\t this._thresh = new Tone.WaveShaper(function (val) {\n\t if (val < 0) {\n\t return -1;\n\t } else {\n\t return 1;\n\t }\n\t });\n\t //connections\n\t this._sawtooth.chain(this._thresh, this.output);\n\t this.width.chain(this._widthGate, this._thresh);\n\t this._readOnly([\n\t 'width',\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t };\n\t Tone.extend(Tone.PulseOscillator, Tone.Oscillator);\n\t /**\n\t\t * The default parameters.\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.PulseOscillator.defaults = {\n\t 'frequency': 440,\n\t 'detune': 0,\n\t 'phase': 0,\n\t 'width': 0.2\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} time \n\t\t * @private\n\t\t */\n\t Tone.PulseOscillator.prototype._start = function (time) {\n\t time = this.toSeconds(time);\n\t this._sawtooth.start(time);\n\t this._widthGate.gain.setValueAtTime(1, time);\n\t };\n\t /**\n\t\t * stop the oscillator\n\t\t * @param {Time} time \n\t\t * @private\n\t\t */\n\t Tone.PulseOscillator.prototype._stop = function (time) {\n\t time = this.toSeconds(time);\n\t this._sawtooth.stop(time);\n\t //the width is still connected to the output. \n\t //that needs to be stopped also\n\t this._widthGate.gain.setValueAtTime(0, time);\n\t };\n\t /**\n\t\t * The phase of the oscillator in degrees.\n\t\t * @memberOf Tone.PulseOscillator#\n\t\t * @type {Degrees}\n\t\t * @name phase\n\t\t */\n\t Object.defineProperty(Tone.PulseOscillator.prototype, 'phase', {\n\t get: function () {\n\t return this._sawtooth.phase;\n\t },\n\t set: function (phase) {\n\t this._sawtooth.phase = phase;\n\t }\n\t });\n\t /**\n\t\t * The type of the oscillator. Always returns \"pulse\".\n\t\t * @readOnly\n\t\t * @memberOf Tone.PulseOscillator#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.PulseOscillator.prototype, 'type', {\n\t get: function () {\n\t return 'pulse';\n\t }\n\t });\n\t /**\n\t\t * The partials of the waveform. Cannot set partials for this waveform type\n\t\t * @memberOf Tone.PulseOscillator#\n\t\t * @type {Array}\n\t\t * @name partials\n\t\t * @private\n\t\t */\n\t Object.defineProperty(Tone.PulseOscillator.prototype, 'partials', {\n\t get: function () {\n\t return [];\n\t }\n\t });\n\t /**\n\t\t * Clean up method.\n\t\t * @return {Tone.PulseOscillator} this\n\t\t */\n\t Tone.PulseOscillator.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t this._sawtooth.dispose();\n\t this._sawtooth = null;\n\t this._writable([\n\t 'width',\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t this.width.dispose();\n\t this.width = null;\n\t this._widthGate.dispose();\n\t this._widthGate = null;\n\t this._thresh.dispose();\n\t this._thresh = null;\n\t this.frequency = null;\n\t this.detune = null;\n\t return this;\n\t };\n\t return Tone.PulseOscillator;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.PWMOscillator modulates the width of a Tone.PulseOscillator \n\t\t * at the modulationFrequency. This has the effect of continuously\n\t\t * changing the timbre of the oscillator by altering the harmonics \n\t\t * generated.\n\t\t *\n\t\t * @extends {Tone.Oscillator}\n\t\t * @constructor\n\t\t * @param {Frequency} frequency The starting frequency of the oscillator. \n\t\t * @param {Frequency} modulationFrequency The modulation frequency of the width of the pulse. \n\t\t * @example\n\t\t * var pwm = new Tone.PWMOscillator(\"Ab3\", 0.3).toMaster().start();\n\t\t */\n\t Tone.PWMOscillator = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'modulationFrequency'\n\t ], Tone.PWMOscillator.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * the pulse oscillator\n\t\t\t * @type {Tone.PulseOscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._pulse = new Tone.PulseOscillator(options.modulationFrequency);\n\t //change the pulse oscillator type\n\t this._pulse._sawtooth.type = 'sine';\n\t /**\n\t\t\t * the modulator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._modulator = new Tone.Oscillator({\n\t 'frequency': options.frequency,\n\t 'detune': options.detune,\n\t 'phase': options.phase\n\t });\n\t /**\n\t\t\t * Scale the oscillator so it doesn't go silent \n\t\t\t * at the extreme values.\n\t\t\t * @type {Tone.Multiply}\n\t\t\t * @private\n\t\t\t */\n\t this._scale = new Tone.Multiply(2);\n\t /**\n\t\t\t * The frequency control.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = this._modulator.frequency;\n\t /**\n\t\t\t * The detune of the oscillator.\n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = this._modulator.detune;\n\t /**\n\t\t\t * The modulation rate of the oscillator. \n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.modulationFrequency = this._pulse.frequency;\n\t //connections\n\t this._modulator.chain(this._scale, this._pulse.width);\n\t this._pulse.connect(this.output);\n\t this._readOnly([\n\t 'modulationFrequency',\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t };\n\t Tone.extend(Tone.PWMOscillator, Tone.Oscillator);\n\t /**\n\t\t * default values\n\t\t * @static\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.PWMOscillator.defaults = {\n\t 'frequency': 440,\n\t 'detune': 0,\n\t 'phase': 0,\n\t 'modulationFrequency': 0.4\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} [time=now]\n\t\t * @private\n\t\t */\n\t Tone.PWMOscillator.prototype._start = function (time) {\n\t time = this.toSeconds(time);\n\t this._modulator.start(time);\n\t this._pulse.start(time);\n\t };\n\t /**\n\t\t * stop the oscillator\n\t\t * @param {Time} time (optional) timing parameter\n\t\t * @private\n\t\t */\n\t Tone.PWMOscillator.prototype._stop = function (time) {\n\t time = this.toSeconds(time);\n\t this._modulator.stop(time);\n\t this._pulse.stop(time);\n\t };\n\t /**\n\t\t * The type of the oscillator. Always returns \"pwm\".\n\t\t * @readOnly\n\t\t * @memberOf Tone.PWMOscillator#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.PWMOscillator.prototype, 'type', {\n\t get: function () {\n\t return 'pwm';\n\t }\n\t });\n\t /**\n\t\t * The partials of the waveform. Cannot set partials for this waveform type\n\t\t * @memberOf Tone.PWMOscillator#\n\t\t * @type {Array}\n\t\t * @name partials\n\t\t * @private\n\t\t */\n\t Object.defineProperty(Tone.PWMOscillator.prototype, 'partials', {\n\t get: function () {\n\t return [];\n\t }\n\t });\n\t /**\n\t\t * The phase of the oscillator in degrees.\n\t\t * @memberOf Tone.PWMOscillator#\n\t\t * @type {number}\n\t\t * @name phase\n\t\t */\n\t Object.defineProperty(Tone.PWMOscillator.prototype, 'phase', {\n\t get: function () {\n\t return this._modulator.phase;\n\t },\n\t set: function (phase) {\n\t this._modulator.phase = phase;\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.PWMOscillator} this\n\t\t */\n\t Tone.PWMOscillator.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t this._pulse.dispose();\n\t this._pulse = null;\n\t this._scale.dispose();\n\t this._scale = null;\n\t this._modulator.dispose();\n\t this._modulator = null;\n\t this._writable([\n\t 'modulationFrequency',\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t this.frequency = null;\n\t this.detune = null;\n\t this.modulationFrequency = null;\n\t return this;\n\t };\n\t return Tone.PWMOscillator;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.FMOscillator \n\t\t *\n\t\t * @extends {Tone.Oscillator}\n\t\t * @constructor\n\t\t * @param {Frequency} frequency The starting frequency of the oscillator. \n\t\t * @param {String} type The type of the carrier oscillator.\n\t\t * @param {String} modulationType The type of the modulator oscillator.\n\t\t * @example\n\t\t * //a sine oscillator frequency-modulated by a square wave\n\t\t * var fmOsc = new Tone.FMOscillator(\"Ab3\", \"sine\", \"square\").toMaster().start();\n\t\t */\n\t Tone.FMOscillator = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'type',\n\t 'modulationType'\n\t ], Tone.FMOscillator.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * The carrier oscillator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._carrier = new Tone.Oscillator(options.frequency, options.type);\n\t /**\n\t\t\t * The oscillator's frequency\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The detune control signal.\n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = this._carrier.detune;\n\t this.detune.value = options.detune;\n\t /**\n\t\t\t * The modulation index which is in essence the depth or amount of the modulation. In other terms it is the \n\t\t\t * ratio of the frequency of the modulating signal (mf) to the amplitude of the \n\t\t\t * modulating signal (ma) -- as in ma/mf. \n\t\t\t *\t@type {Positive}\n\t\t\t *\t@signal\n\t\t\t */\n\t this.modulationIndex = new Tone.Multiply(options.modulationIndex);\n\t this.modulationIndex.units = Tone.Type.Positive;\n\t /**\n\t\t\t * The modulating oscillator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._modulator = new Tone.Oscillator(options.frequency, options.modulationType);\n\t /**\n\t\t\t * Harmonicity is the frequency ratio between the carrier and the modulator oscillators. \n\t\t\t * A harmonicity of 1 gives both oscillators the same frequency. \n\t\t\t * Harmonicity = 2 means a change of an octave. \n\t\t\t * @type {Positive}\n\t\t\t * @signal\n\t\t\t * @example\n\t\t\t * //pitch the modulator an octave below carrier\n\t\t\t * synth.harmonicity.value = 0.5;\n\t\t\t */\n\t this.harmonicity = new Tone.Multiply(options.harmonicity);\n\t this.harmonicity.units = Tone.Type.Positive;\n\t /**\n\t\t\t * the node where the modulation happens\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._modulationNode = new Tone.Gain(0);\n\t //connections\n\t this.frequency.connect(this._carrier.frequency);\n\t this.frequency.chain(this.harmonicity, this._modulator.frequency);\n\t this.frequency.chain(this.modulationIndex, this._modulationNode);\n\t this._modulator.connect(this._modulationNode.gain);\n\t this._modulationNode.connect(this._carrier.frequency);\n\t this._carrier.connect(this.output);\n\t this.detune.connect(this._modulator.detune);\n\t this.phase = options.phase;\n\t this._readOnly([\n\t 'modulationIndex',\n\t 'frequency',\n\t 'detune',\n\t 'harmonicity'\n\t ]);\n\t };\n\t Tone.extend(Tone.FMOscillator, Tone.Oscillator);\n\t /**\n\t\t * default values\n\t\t * @static\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.FMOscillator.defaults = {\n\t 'frequency': 440,\n\t 'detune': 0,\n\t 'phase': 0,\n\t 'modulationIndex': 2,\n\t 'modulationType': 'square',\n\t 'harmonicity': 1\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} [time=now]\n\t\t * @private\n\t\t */\n\t Tone.FMOscillator.prototype._start = function (time) {\n\t time = this.toSeconds(time);\n\t this._modulator.start(time);\n\t this._carrier.start(time);\n\t };\n\t /**\n\t\t * stop the oscillator\n\t\t * @param {Time} time (optional) timing parameter\n\t\t * @private\n\t\t */\n\t Tone.FMOscillator.prototype._stop = function (time) {\n\t time = this.toSeconds(time);\n\t this._modulator.stop(time);\n\t this._carrier.stop(time);\n\t };\n\t /**\n\t\t * The type of the carrier oscillator\n\t\t * @memberOf Tone.FMOscillator#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.FMOscillator.prototype, 'type', {\n\t get: function () {\n\t return this._carrier.type;\n\t },\n\t set: function (type) {\n\t this._carrier.type = type;\n\t }\n\t });\n\t /**\n\t\t * The type of the modulator oscillator\n\t\t * @memberOf Tone.FMOscillator#\n\t\t * @type {String}\n\t\t * @name modulationType\n\t\t */\n\t Object.defineProperty(Tone.FMOscillator.prototype, 'modulationType', {\n\t get: function () {\n\t return this._modulator.type;\n\t },\n\t set: function (type) {\n\t this._modulator.type = type;\n\t }\n\t });\n\t /**\n\t\t * The phase of the oscillator in degrees.\n\t\t * @memberOf Tone.FMOscillator#\n\t\t * @type {number}\n\t\t * @name phase\n\t\t */\n\t Object.defineProperty(Tone.FMOscillator.prototype, 'phase', {\n\t get: function () {\n\t return this._carrier.phase;\n\t },\n\t set: function (phase) {\n\t this._carrier.phase = phase;\n\t this._modulator.phase = phase;\n\t }\n\t });\n\t /**\n\t\t * The partials of the carrier waveform. A partial represents \n\t\t * the amplitude at a harmonic. The first harmonic is the \n\t\t * fundamental frequency, the second is the octave and so on\n\t\t * following the harmonic series. \n\t\t * Setting this value will automatically set the type to \"custom\". \n\t\t * The value is an empty array when the type is not \"custom\". \n\t\t * @memberOf Tone.FMOscillator#\n\t\t * @type {Array}\n\t\t * @name partials\n\t\t * @example\n\t\t * osc.partials = [1, 0.2, 0.01];\n\t\t */\n\t Object.defineProperty(Tone.FMOscillator.prototype, 'partials', {\n\t get: function () {\n\t return this._carrier.partials;\n\t },\n\t set: function (partials) {\n\t this._carrier.partials = partials;\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.FMOscillator} this\n\t\t */\n\t Tone.FMOscillator.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t this._writable([\n\t 'modulationIndex',\n\t 'frequency',\n\t 'detune',\n\t 'harmonicity'\n\t ]);\n\t this.frequency.dispose();\n\t this.frequency = null;\n\t this.detune = null;\n\t this.harmonicity.dispose();\n\t this.harmonicity = null;\n\t this._carrier.dispose();\n\t this._carrier = null;\n\t this._modulator.dispose();\n\t this._modulator = null;\n\t this._modulationNode.dispose();\n\t this._modulationNode = null;\n\t this.modulationIndex.dispose();\n\t this.modulationIndex = null;\n\t return this;\n\t };\n\t return Tone.FMOscillator;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.AMOscillator \n\t\t *\n\t\t * @extends {Tone.Oscillator}\n\t\t * @constructor\n\t\t * @param {Frequency} frequency The starting frequency of the oscillator. \n\t\t * @param {String} type The type of the carrier oscillator.\n\t\t * @param {String} modulationType The type of the modulator oscillator.\n\t\t * @example\n\t\t * //a sine oscillator frequency-modulated by a square wave\n\t\t * var fmOsc = new Tone.AMOscillator(\"Ab3\", \"sine\", \"square\").toMaster().start();\n\t\t */\n\t Tone.AMOscillator = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'type',\n\t 'modulationType'\n\t ], Tone.AMOscillator.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * The carrier oscillator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._carrier = new Tone.Oscillator(options.frequency, options.type);\n\t /**\n\t\t\t * The oscillator's frequency\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = this._carrier.frequency;\n\t /**\n\t\t\t * The detune control signal.\n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = this._carrier.detune;\n\t this.detune.value = options.detune;\n\t /**\n\t\t\t * The modulating oscillator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._modulator = new Tone.Oscillator(options.frequency, options.modulationType);\n\t /**\n\t\t\t * convert the -1,1 output to 0,1\n\t\t\t * @type {Tone.AudioToGain}\n\t\t\t * @private\n\t\t\t */\n\t this._modulationScale = new Tone.AudioToGain();\n\t /**\n\t\t\t * Harmonicity is the frequency ratio between the carrier and the modulator oscillators. \n\t\t\t * A harmonicity of 1 gives both oscillators the same frequency. \n\t\t\t * Harmonicity = 2 means a change of an octave. \n\t\t\t * @type {Positive}\n\t\t\t * @signal\n\t\t\t * @example\n\t\t\t * //pitch the modulator an octave below carrier\n\t\t\t * synth.harmonicity.value = 0.5;\n\t\t\t */\n\t this.harmonicity = new Tone.Multiply(options.harmonicity);\n\t this.harmonicity.units = Tone.Type.Positive;\n\t /**\n\t\t\t * the node where the modulation happens\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._modulationNode = new Tone.Gain(0);\n\t //connections\n\t this.frequency.chain(this.harmonicity, this._modulator.frequency);\n\t this.detune.connect(this._modulator.detune);\n\t this._modulator.chain(this._modulationScale, this._modulationNode.gain);\n\t this._carrier.chain(this._modulationNode, this.output);\n\t this.phase = options.phase;\n\t this._readOnly([\n\t 'frequency',\n\t 'detune',\n\t 'harmonicity'\n\t ]);\n\t };\n\t Tone.extend(Tone.AMOscillator, Tone.Oscillator);\n\t /**\n\t\t * default values\n\t\t * @static\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.AMOscillator.defaults = {\n\t 'frequency': 440,\n\t 'detune': 0,\n\t 'phase': 0,\n\t 'modulationType': 'square',\n\t 'harmonicity': 1\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} [time=now]\n\t\t * @private\n\t\t */\n\t Tone.AMOscillator.prototype._start = function (time) {\n\t time = this.toSeconds(time);\n\t this._modulator.start(time);\n\t this._carrier.start(time);\n\t };\n\t /**\n\t\t * stop the oscillator\n\t\t * @param {Time} time (optional) timing parameter\n\t\t * @private\n\t\t */\n\t Tone.AMOscillator.prototype._stop = function (time) {\n\t time = this.toSeconds(time);\n\t this._modulator.stop(time);\n\t this._carrier.stop(time);\n\t };\n\t /**\n\t\t * The type of the carrier oscillator\n\t\t * @memberOf Tone.AMOscillator#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.AMOscillator.prototype, 'type', {\n\t get: function () {\n\t return this._carrier.type;\n\t },\n\t set: function (type) {\n\t this._carrier.type = type;\n\t }\n\t });\n\t /**\n\t\t * The type of the modulator oscillator\n\t\t * @memberOf Tone.AMOscillator#\n\t\t * @type {string}\n\t\t * @name modulationType\n\t\t */\n\t Object.defineProperty(Tone.AMOscillator.prototype, 'modulationType', {\n\t get: function () {\n\t return this._modulator.type;\n\t },\n\t set: function (type) {\n\t this._modulator.type = type;\n\t }\n\t });\n\t /**\n\t\t * The phase of the oscillator in degrees.\n\t\t * @memberOf Tone.AMOscillator#\n\t\t * @type {number}\n\t\t * @name phase\n\t\t */\n\t Object.defineProperty(Tone.AMOscillator.prototype, 'phase', {\n\t get: function () {\n\t return this._carrier.phase;\n\t },\n\t set: function (phase) {\n\t this._carrier.phase = phase;\n\t this._modulator.phase = phase;\n\t }\n\t });\n\t /**\n\t\t * The partials of the carrier waveform. A partial represents \n\t\t * the amplitude at a harmonic. The first harmonic is the \n\t\t * fundamental frequency, the second is the octave and so on\n\t\t * following the harmonic series. \n\t\t * Setting this value will automatically set the type to \"custom\". \n\t\t * The value is an empty array when the type is not \"custom\". \n\t\t * @memberOf Tone.AMOscillator#\n\t\t * @type {Array}\n\t\t * @name partials\n\t\t * @example\n\t\t * osc.partials = [1, 0.2, 0.01];\n\t\t */\n\t Object.defineProperty(Tone.AMOscillator.prototype, 'partials', {\n\t get: function () {\n\t return this._carrier.partials;\n\t },\n\t set: function (partials) {\n\t this._carrier.partials = partials;\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.AMOscillator} this\n\t\t */\n\t Tone.AMOscillator.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t this._writable([\n\t 'frequency',\n\t 'detune',\n\t 'harmonicity'\n\t ]);\n\t this.frequency = null;\n\t this.detune = null;\n\t this.harmonicity.dispose();\n\t this.harmonicity = null;\n\t this._carrier.dispose();\n\t this._carrier = null;\n\t this._modulator.dispose();\n\t this._modulator = null;\n\t this._modulationNode.dispose();\n\t this._modulationNode = null;\n\t this._modulationScale.dispose();\n\t this._modulationScale = null;\n\t return this;\n\t };\n\t return Tone.AMOscillator;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.FatOscillator \n\t\t *\n\t\t * @extends {Tone.Oscillator}\n\t\t * @constructor\n\t\t * @param {Frequency} frequency The starting frequency of the oscillator. \n\t\t * @param {String} type The type of the carrier oscillator.\n\t\t * @param {String} modulationType The type of the modulator oscillator.\n\t\t * @example\n\t\t * //a sine oscillator frequency-modulated by a square wave\n\t\t * var fmOsc = new Tone.FatOscillator(\"Ab3\", \"sine\", \"square\").toMaster().start();\n\t\t */\n\t Tone.FatOscillator = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'type',\n\t 'spread'\n\t ], Tone.FatOscillator.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * The oscillator's frequency\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The detune control signal.\n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = new Tone.Signal(options.detune, Tone.Type.Cents);\n\t /**\n\t\t\t * The array of oscillators\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._oscillators = [];\n\t /**\n\t\t\t * The total spread of the oscillators\n\t\t\t * @type {Cents}\n\t\t\t * @private\n\t\t\t */\n\t this._spread = options.spread;\n\t /**\n\t\t\t * The type of the oscillator\n\t\t\t * @type {String}\n\t\t\t * @private\n\t\t\t */\n\t this._type = options.type;\n\t /**\n\t\t\t * The phase of the oscillators\n\t\t\t * @type {Degrees}\n\t\t\t * @private\n\t\t\t */\n\t this._phase = options.phase;\n\t /**\n\t\t\t * The partials array\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._partials = this.defaultArg(options.partials, []);\n\t //set the count initially\n\t this.count = options.count;\n\t this._readOnly([\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t };\n\t Tone.extend(Tone.FatOscillator, Tone.Oscillator);\n\t /**\n\t\t * default values\n\t\t * @static\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.FatOscillator.defaults = {\n\t 'frequency': 440,\n\t 'detune': 0,\n\t 'phase': 0,\n\t 'spread': 20,\n\t 'count': 3,\n\t 'type': 'sawtooth'\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} [time=now]\n\t\t * @private\n\t\t */\n\t Tone.FatOscillator.prototype._start = function (time) {\n\t time = this.toSeconds(time);\n\t this._forEach(function (osc) {\n\t osc.start(time);\n\t });\n\t };\n\t /**\n\t\t * stop the oscillator\n\t\t * @param {Time} time (optional) timing parameter\n\t\t * @private\n\t\t */\n\t Tone.FatOscillator.prototype._stop = function (time) {\n\t time = this.toSeconds(time);\n\t this._forEach(function (osc) {\n\t osc.stop(time);\n\t });\n\t };\n\t /**\n\t\t * Iterate over all of the oscillators\n\t\t * @param {Function} iterator The iterator function\n\t\t * @private\n\t\t */\n\t Tone.FatOscillator.prototype._forEach = function (iterator) {\n\t for (var i = 0; i < this._oscillators.length; i++) {\n\t iterator.call(this, this._oscillators[i], i);\n\t }\n\t };\n\t /**\n\t\t * The type of the carrier oscillator\n\t\t * @memberOf Tone.FatOscillator#\n\t\t * @type {string}\n\t\t * @name type\n\t\t */\n\t Object.defineProperty(Tone.FatOscillator.prototype, 'type', {\n\t get: function () {\n\t return this._type;\n\t },\n\t set: function (type) {\n\t this._type = type;\n\t this._forEach(function (osc) {\n\t osc.type = type;\n\t });\n\t }\n\t });\n\t /**\n\t\t * The detune spread between the oscillators. If \"count\" is\n\t\t * set to 3 oscillators and the \"spread\" is set to 40,\n\t\t * the three oscillators would be detuned like this: [-20, 0, 20]\n\t\t * for a total detune spread of 40 cents.\n\t\t * @memberOf Tone.FatOscillator#\n\t\t * @type {Cents}\n\t\t * @name spread\n\t\t */\n\t Object.defineProperty(Tone.FatOscillator.prototype, 'spread', {\n\t get: function () {\n\t return this._spread;\n\t },\n\t set: function (spread) {\n\t this._spread = spread;\n\t if (this._oscillators.length > 1) {\n\t var start = -spread / 2;\n\t var step = spread / (this._oscillators.length - 1);\n\t this._forEach(function (osc, i) {\n\t osc.detune.value = start + step * i;\n\t });\n\t }\n\t }\n\t });\n\t /**\n\t\t * The number of detuned oscillators\n\t\t * @memberOf Tone.FatOscillator#\n\t\t * @type {Number}\n\t\t * @name count\n\t\t */\n\t Object.defineProperty(Tone.FatOscillator.prototype, 'count', {\n\t get: function () {\n\t return this._oscillators.length;\n\t },\n\t set: function (count) {\n\t count = Math.max(count, 1);\n\t if (this._oscillators.length !== count) {\n\t // var partials = this.partials;\n\t // var type = this.type;\n\t //dispose the previous oscillators\n\t this._forEach(function (osc) {\n\t osc.dispose();\n\t });\n\t this._oscillators = [];\n\t for (var i = 0; i < count; i++) {\n\t var osc = new Tone.Oscillator();\n\t if (this.type === Tone.Oscillator.Type.Custom) {\n\t osc.partials = this._partials;\n\t } else {\n\t osc.type = this._type;\n\t }\n\t osc.phase = this._phase;\n\t osc.volume.value = -6 - count;\n\t this.frequency.connect(osc.frequency);\n\t this.detune.connect(osc.detune);\n\t osc.connect(this.output);\n\t this._oscillators[i] = osc;\n\t }\n\t //set the spread\n\t this.spread = this._spread;\n\t if (this.state === Tone.State.Started) {\n\t this._forEach(function (osc) {\n\t osc.start();\n\t });\n\t }\n\t }\n\t }\n\t });\n\t /**\n\t\t * The phase of the oscillator in degrees.\n\t\t * @memberOf Tone.FatOscillator#\n\t\t * @type {Number}\n\t\t * @name phase\n\t\t */\n\t Object.defineProperty(Tone.FatOscillator.prototype, 'phase', {\n\t get: function () {\n\t return this._phase;\n\t },\n\t set: function (phase) {\n\t this._phase = phase;\n\t this._forEach(function (osc) {\n\t osc.phase = phase;\n\t });\n\t }\n\t });\n\t /**\n\t\t * The partials of the carrier waveform. A partial represents \n\t\t * the amplitude at a harmonic. The first harmonic is the \n\t\t * fundamental frequency, the second is the octave and so on\n\t\t * following the harmonic series. \n\t\t * Setting this value will automatically set the type to \"custom\". \n\t\t * The value is an empty array when the type is not \"custom\". \n\t\t * @memberOf Tone.FatOscillator#\n\t\t * @type {Array}\n\t\t * @name partials\n\t\t * @example\n\t\t * osc.partials = [1, 0.2, 0.01];\n\t\t */\n\t Object.defineProperty(Tone.FatOscillator.prototype, 'partials', {\n\t get: function () {\n\t return this._partials;\n\t },\n\t set: function (partials) {\n\t this._partials = partials;\n\t this._type = Tone.Oscillator.Type.Custom;\n\t this._forEach(function (osc) {\n\t osc.partials = partials;\n\t });\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.FatOscillator} this\n\t\t */\n\t Tone.FatOscillator.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t this._writable([\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t this.frequency.dispose();\n\t this.frequency = null;\n\t this.detune.dispose();\n\t this.detune = null;\n\t this._forEach(function (osc) {\n\t osc.dispose();\n\t });\n\t this._oscillators = null;\n\t this._partials = null;\n\t return this;\n\t };\n\t return Tone.FatOscillator;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.OmniOscillator aggregates Tone.Oscillator, Tone.PulseOscillator,\n\t\t * Tone.PWMOscillator, Tone.FMOscillator, Tone.AMOscillator, and Tone.FatOscillator\n\t\t * into one class. The oscillator class can be changed by setting the `type`. \n\t\t * `omniOsc.type = \"pwm\"` will set it to the Tone.PWMOscillator. Prefixing\n\t\t * any of the basic types (\"sine\", \"square4\", etc.) with \"fm\", \"am\", or \"fat\"\n\t\t * will use the FMOscillator, AMOscillator or FatOscillator respectively. \n\t\t * For example: `omniOsc.type = \"fatsawtooth\"` will create set the oscillator\n\t\t * to a FatOscillator of type \"sawtooth\". \n\t\t *\n\t\t * @extends {Tone.Oscillator}\n\t\t * @constructor\n\t\t * @param {Frequency} frequency The initial frequency of the oscillator.\n\t\t * @param {String} type The type of the oscillator.\n\t\t * @example\n\t\t * var omniOsc = new Tone.OmniOscillator(\"C#4\", \"pwm\");\n\t\t */\n\t Tone.OmniOscillator = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'frequency',\n\t 'type'\n\t ], Tone.OmniOscillator.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * The frequency control.\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The detune control\n\t\t\t * @type {Cents}\n\t\t\t * @signal\n\t\t\t */\n\t this.detune = new Tone.Signal(options.detune, Tone.Type.Cents);\n\t /**\n\t\t\t * the type of the oscillator source\n\t\t\t * @type {String}\n\t\t\t * @private\n\t\t\t */\n\t this._sourceType = undefined;\n\t /**\n\t\t\t * the oscillator\n\t\t\t * @type {Tone.Oscillator}\n\t\t\t * @private\n\t\t\t */\n\t this._oscillator = null;\n\t //set the oscillator\n\t this.type = options.type;\n\t this._readOnly([\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t //set the options\n\t this.set(options);\n\t };\n\t Tone.extend(Tone.OmniOscillator, Tone.Oscillator);\n\t /**\n\t\t * default values\n\t\t * @static\n\t\t * @type {Object}\n\t\t * @const\n\t\t */\n\t Tone.OmniOscillator.defaults = {\n\t 'frequency': 440,\n\t 'detune': 0,\n\t 'type': 'sine',\n\t 'phase': 0\n\t };\n\t /**\n\t\t * @enum {String}\n\t\t * @private\n\t\t */\n\t var OmniOscType = {\n\t Pulse: 'PulseOscillator',\n\t PWM: 'PWMOscillator',\n\t Osc: 'Oscillator',\n\t FM: 'FMOscillator',\n\t AM: 'AMOscillator',\n\t Fat: 'FatOscillator'\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} [time=now] the time to start the oscillator\n\t\t * @private\n\t\t */\n\t Tone.OmniOscillator.prototype._start = function (time) {\n\t this._oscillator.start(time);\n\t };\n\t /**\n\t\t * start the oscillator\n\t\t * @param {Time} [time=now] the time to start the oscillator\n\t\t * @private\n\t\t */\n\t Tone.OmniOscillator.prototype._stop = function (time) {\n\t this._oscillator.stop(time);\n\t };\n\t /**\n\t\t * The type of the oscillator. Can be any of the basic types: sine, square, triangle, sawtooth. Or\n\t\t * prefix the basic types with \"fm\", \"am\", or \"fat\" to use the FMOscillator, AMOscillator or FatOscillator\n\t\t * types. The oscillator could also be set to \"pwm\" or \"pulse\". All of the parameters of the\n\t\t * oscillator's class are accessible when the oscillator is set to that type, but throws an error \n\t\t * when it's not.\n\t\t * \n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {String}\n\t\t * @name type\n\t\t * @example\n\t\t * omniOsc.type = \"pwm\";\n\t\t * //modulationFrequency is parameter which is available\n\t\t * //only when the type is \"pwm\". \n\t\t * omniOsc.modulationFrequency.value = 0.5;\n\t\t * @example\n\t\t * //an square wave frequency modulated by a sawtooth\n\t\t * omniOsc.type = \"fmsquare\";\n\t\t * omniOsc.modulationType = \"sawtooth\";\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'type', {\n\t get: function () {\n\t var prefix = '';\n\t if (this._sourceType === OmniOscType.FM) {\n\t prefix = 'fm';\n\t } else if (this._sourceType === OmniOscType.AM) {\n\t prefix = 'am';\n\t } else if (this._sourceType === OmniOscType.Fat) {\n\t prefix = 'fat';\n\t }\n\t return prefix + this._oscillator.type;\n\t },\n\t set: function (type) {\n\t if (type.substr(0, 2) === 'fm') {\n\t this._createNewOscillator(OmniOscType.FM);\n\t this._oscillator.type = type.substr(2);\n\t } else if (type.substr(0, 2) === 'am') {\n\t this._createNewOscillator(OmniOscType.AM);\n\t this._oscillator.type = type.substr(2);\n\t } else if (type.substr(0, 3) === 'fat') {\n\t this._createNewOscillator(OmniOscType.Fat);\n\t this._oscillator.type = type.substr(3);\n\t } else if (type === 'pwm') {\n\t this._createNewOscillator(OmniOscType.PWM);\n\t } else if (type === 'pulse') {\n\t this._createNewOscillator(OmniOscType.Pulse);\n\t } else {\n\t this._createNewOscillator(OmniOscType.Osc);\n\t this._oscillator.type = type;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The partials of the waveform. A partial represents \n\t\t * the amplitude at a harmonic. The first harmonic is the \n\t\t * fundamental frequency, the second is the octave and so on\n\t\t * following the harmonic series. \n\t\t * Setting this value will automatically set the type to \"custom\". \n\t\t * The value is an empty array when the type is not \"custom\". \n\t\t * This is not available on \"pwm\" and \"pulse\" oscillator types.\n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {Array}\n\t\t * @name partials\n\t\t * @example\n\t\t * osc.partials = [1, 0.2, 0.01];\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'partials', {\n\t get: function () {\n\t return this._oscillator.partials;\n\t },\n\t set: function (partials) {\n\t this._oscillator.partials = partials;\n\t }\n\t });\n\t /**\n\t\t * Set a member/attribute of the oscillator. \n\t\t * @param {Object|String} params\n\t\t * @param {number=} value\n\t\t * @param {Time=} rampTime\n\t\t * @returns {Tone.OmniOscillator} this\n\t\t */\n\t Tone.OmniOscillator.prototype.set = function (params, value) {\n\t //make sure the type is set first\n\t if (params === 'type') {\n\t this.type = value;\n\t } else if (this.isObject(params) && params.hasOwnProperty('type')) {\n\t this.type = params.type;\n\t }\n\t //then set the rest\n\t Tone.prototype.set.apply(this, arguments);\n\t return this;\n\t };\n\t /**\n\t\t * connect the oscillator to the frequency and detune signals\n\t\t * @private\n\t\t */\n\t Tone.OmniOscillator.prototype._createNewOscillator = function (oscType) {\n\t if (oscType !== this._sourceType) {\n\t this._sourceType = oscType;\n\t var OscillatorConstructor = Tone[oscType];\n\t //short delay to avoid clicks on the change\n\t var now = this.now() + this.blockTime;\n\t if (this._oscillator !== null) {\n\t var oldOsc = this._oscillator;\n\t oldOsc.stop(now);\n\t //dispose the old one\n\t setTimeout(function () {\n\t oldOsc.dispose();\n\t oldOsc = null;\n\t }, this.blockTime * 1000);\n\t }\n\t this._oscillator = new OscillatorConstructor();\n\t this.frequency.connect(this._oscillator.frequency);\n\t this.detune.connect(this._oscillator.detune);\n\t this._oscillator.connect(this.output);\n\t if (this.state === Tone.State.Started) {\n\t this._oscillator.start(now);\n\t }\n\t }\n\t };\n\t /**\n\t\t * The phase of the oscillator in degrees. \n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {Degrees}\n\t\t * @name phase\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'phase', {\n\t get: function () {\n\t return this._oscillator.phase;\n\t },\n\t set: function (phase) {\n\t this._oscillator.phase = phase;\n\t }\n\t });\n\t /**\n\t\t * The width of the oscillator (only if the oscillator is set to \"pulse\")\n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {NormalRange}\n\t\t * @signal\n\t\t * @name width\n\t\t * @example\n\t\t * var omniOsc = new Tone.OmniOscillator(440, \"pulse\");\n\t\t * //can access the width attribute only if type === \"pulse\"\n\t\t * omniOsc.width.value = 0.2; \n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'width', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.Pulse) {\n\t return this._oscillator.width;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The number of detuned oscillators\n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {Number}\n\t\t * @name count\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'count', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.Fat) {\n\t return this._oscillator.count;\n\t }\n\t },\n\t set: function (count) {\n\t if (this._sourceType === OmniOscType.Fat) {\n\t this._oscillator.count = count;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The detune spread between the oscillators. If \"count\" is\n\t\t * set to 3 oscillators and the \"spread\" is set to 40,\n\t\t * the three oscillators would be detuned like this: [-20, 0, 20]\n\t\t * for a total detune spread of 40 cents. See Tone.FatOscillator\n\t\t * for more info.\n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {Cents}\n\t\t * @name spread\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'spread', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.Fat) {\n\t return this._oscillator.spread;\n\t }\n\t },\n\t set: function (spread) {\n\t if (this._sourceType === OmniOscType.Fat) {\n\t this._oscillator.spread = spread;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The type of the modulator oscillator. Only if the oscillator\n\t\t * is set to \"am\" or \"fm\" types. see. Tone.AMOscillator or Tone.FMOscillator\n\t\t * for more info. \n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {String}\n\t\t * @name modulationType\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'modulationType', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.FM || this._sourceType === OmniOscType.AM) {\n\t return this._oscillator.modulationType;\n\t }\n\t },\n\t set: function (mType) {\n\t if (this._sourceType === OmniOscType.FM || this._sourceType === OmniOscType.AM) {\n\t this._oscillator.modulationType = mType;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The modulation index which is in essence the depth or amount of the modulation. In other terms it is the \n\t\t * ratio of the frequency of the modulating signal (mf) to the amplitude of the \n\t\t * modulating signal (ma) -- as in ma/mf. \n\t\t * See Tone.FMOscillator for more info. \n\t\t * @type {Positive}\n\t\t * @signal\n\t\t * @name modulationIndex\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'modulationIndex', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.FM) {\n\t return this._oscillator.modulationIndex;\n\t }\n\t }\n\t });\n\t /**\n\t\t * Harmonicity is the frequency ratio between the carrier and the modulator oscillators. \n\t\t * A harmonicity of 1 gives both oscillators the same frequency. \n\t\t * Harmonicity = 2 means a change of an octave. See Tone.AMOscillator or Tone.FMOscillator\n\t\t * for more info. \n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @signal\n\t\t * @type {Positive}\n\t\t * @name harmonicity\n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'harmonicity', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.FM || this._sourceType === OmniOscType.AM) {\n\t return this._oscillator.harmonicity;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The modulationFrequency Signal of the oscillator \n\t\t * (only if the oscillator type is set to pwm). See \n\t\t * Tone.PWMOscillator for more info. \n\t\t * @memberOf Tone.OmniOscillator#\n\t\t * @type {Frequency}\n\t\t * @signal\n\t\t * @name modulationFrequency\n\t\t * @example\n\t\t * var omniOsc = new Tone.OmniOscillator(440, \"pwm\");\n\t\t * //can access the modulationFrequency attribute only if type === \"pwm\"\n\t\t * omniOsc.modulationFrequency.value = 0.2; \n\t\t */\n\t Object.defineProperty(Tone.OmniOscillator.prototype, 'modulationFrequency', {\n\t get: function () {\n\t if (this._sourceType === OmniOscType.PWM) {\n\t return this._oscillator.modulationFrequency;\n\t }\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.OmniOscillator} this\n\t\t */\n\t Tone.OmniOscillator.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t this._writable([\n\t 'frequency',\n\t 'detune'\n\t ]);\n\t this.detune.dispose();\n\t this.detune = null;\n\t this.frequency.dispose();\n\t this.frequency = null;\n\t this._oscillator.dispose();\n\t this._oscillator = null;\n\t this._sourceType = null;\n\t return this;\n\t };\n\t return Tone.OmniOscillator;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Base-class for all instruments\n\t\t * \n\t\t * @constructor\n\t\t * @extends {Tone}\n\t\t */\n\t Tone.Instrument = function (options) {\n\t //get the defaults\n\t options = this.defaultArg(options, Tone.Instrument.defaults);\n\t /**\n\t\t\t * The output and volume triming node\n\t\t\t * @type {Tone.Volume}\n\t\t\t * @private\n\t\t\t */\n\t this._volume = this.output = new Tone.Volume(options.volume);\n\t /**\n\t\t\t * The volume of the output in decibels.\n\t\t\t * @type {Decibels}\n\t\t\t * @signal\n\t\t\t * @example\n\t\t\t * source.volume.value = -6;\n\t\t\t */\n\t this.volume = this._volume.volume;\n\t this._readOnly('volume');\n\t };\n\t Tone.extend(Tone.Instrument);\n\t /**\n\t\t * the default attributes\n\t\t * @type {object}\n\t\t */\n\t Tone.Instrument.defaults = {\n\t /** the volume of the output in decibels */\n\t 'volume': 0\n\t };\n\t /**\n\t\t * @abstract\n\t\t * @param {string|number} note the note to trigger\n\t\t * @param {Time} [time=now] the time to trigger the ntoe\n\t\t * @param {number} [velocity=1] the velocity to trigger the note\n\t\t */\n\t Tone.Instrument.prototype.triggerAttack = Tone.noOp;\n\t /**\n\t\t * @abstract\n\t\t * @param {Time} [time=now] when to trigger the release\n\t\t */\n\t Tone.Instrument.prototype.triggerRelease = Tone.noOp;\n\t /**\n\t\t * Trigger the attack and then the release after the duration. \n\t\t * @param {Frequency} note The note to trigger.\n\t\t * @param {Time} duration How long the note should be held for before\n\t\t * triggering the release. This value must be greater than 0. \n\t\t * @param {Time} [time=now] When the note should be triggered.\n\t\t * @param {NormalRange} [velocity=1] The velocity the note should be triggered at.\n\t\t * @returns {Tone.Instrument} this\n\t\t * @example\n\t\t * //trigger \"C4\" for the duration of an 8th note\n\t\t * synth.triggerAttackRelease(\"C4\", \"8n\");\n\t\t */\n\t Tone.Instrument.prototype.triggerAttackRelease = function (note, duration, time, velocity) {\n\t if (this.isUndef(time)) {\n\t time = this.now() + this.blockTime;\n\t } else {\n\t time = this.toSeconds(time);\n\t }\n\t duration = this.toSeconds(duration);\n\t this.triggerAttack(note, time, velocity);\n\t this.triggerRelease(time + duration);\n\t return this;\n\t };\n\t /**\n\t\t * clean up\n\t\t * @returns {Tone.Instrument} this\n\t\t */\n\t Tone.Instrument.prototype.dispose = function () {\n\t Tone.prototype.dispose.call(this);\n\t this._volume.dispose();\n\t this._volume = null;\n\t this._writable(['volume']);\n\t this.volume = null;\n\t return this;\n\t };\n\t return Tone.Instrument;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class This is an abstract base class for other monophonic instruments to \n\t\t * extend. IMPORTANT: It does not make any sound on its own and\n\t\t * shouldn't be directly instantiated.\n\t\t *\n\t\t * @constructor\n\t\t * @abstract\n\t\t * @extends {Tone.Instrument}\n\t\t */\n\t Tone.Monophonic = function (options) {\n\t //get the defaults\n\t options = this.defaultArg(options, Tone.Monophonic.defaults);\n\t Tone.Instrument.call(this, options);\n\t /**\n\t\t\t * The glide time between notes. \n\t\t\t * @type {Time}\n\t\t\t */\n\t this.portamento = options.portamento;\n\t };\n\t Tone.extend(Tone.Monophonic, Tone.Instrument);\n\t /**\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Monophonic.defaults = { 'portamento': 0 };\n\t /**\n\t\t * Trigger the attack of the note optionally with a given velocity. \n\t\t * \n\t\t * \n\t\t * @param {Frequency} note The note to trigger.\n\t\t * @param {Time} [time=now] When the note should start.\n\t\t * @param {number} [velocity=1] velocity The velocity scaler \n\t\t * determines how \"loud\" the note \n\t\t * will be triggered.\n\t\t * @returns {Tone.Monophonic} this\n\t\t * @example\n\t\t * synth.triggerAttack(\"C4\");\n\t\t * @example\n\t\t * //trigger the note a half second from now at half velocity\n\t\t * synth.triggerAttack(\"C4\", \"+0.5\", 0.5);\n\t\t */\n\t Tone.Monophonic.prototype.triggerAttack = function (note, time, velocity) {\n\t if (this.isUndef(time)) {\n\t time = this.now() + this.blockTime;\n\t } else {\n\t time = this.toSeconds(time);\n\t }\n\t this._triggerEnvelopeAttack(time, velocity);\n\t this.setNote(note, time);\n\t return this;\n\t };\n\t /**\n\t\t * Trigger the release portion of the envelope\n\t\t * @param {Time} [time=now] If no time is given, the release happens immediatly\n\t\t * @returns {Tone.Monophonic} this\n\t\t * @example\n\t\t * synth.triggerRelease();\n\t\t */\n\t Tone.Monophonic.prototype.triggerRelease = function (time) {\n\t if (this.isUndef(time)) {\n\t time = this.now() + this.blockTime;\n\t } else {\n\t time = this.toSeconds(time);\n\t }\n\t this._triggerEnvelopeRelease(time);\n\t return this;\n\t };\n\t /**\n\t\t * override this method with the actual method\n\t\t * @abstract\n\t\t * @private\n\t\t */\n\t Tone.Monophonic.prototype._triggerEnvelopeAttack = function () {\n\t };\n\t /**\n\t\t * override this method with the actual method\n\t\t * @abstract\n\t\t * @private\n\t\t */\n\t Tone.Monophonic.prototype._triggerEnvelopeRelease = function () {\n\t };\n\t /**\n\t\t * Set the note at the given time. If no time is given, the note\n\t\t * will set immediately. \n\t\t * @param {Frequency} note The note to change to.\n\t\t * @param {Time} [time=now] The time when the note should be set. \n\t\t * @returns {Tone.Monophonic} this\n\t\t * @example\n\t\t * //change to F#6 in one quarter note from now.\n\t\t * synth.setNote(\"F#6\", \"+4n\");\n\t\t * @example\n\t\t * //change to Bb4 right now\n\t\t * synth.setNote(\"Bb4\");\n\t\t */\n\t Tone.Monophonic.prototype.setNote = function (note, time) {\n\t time = this.toSeconds(time);\n\t if (this.portamento > 0) {\n\t var currentNote = this.frequency.value;\n\t this.frequency.setValueAtTime(currentNote, time);\n\t var portTime = this.toSeconds(this.portamento);\n\t this.frequency.exponentialRampToValueAtTime(note, time + portTime);\n\t } else {\n\t this.frequency.setValueAtTime(note, time);\n\t }\n\t return this;\n\t };\n\t return Tone.Monophonic;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Synth is composed simply of a Tone.OmniOscillator\n\t\t * routed through a Tone.AmplitudeEnvelope. \n\t\t * note * .octaves and ramps to \n\t\t * note over the duration of .pitchDecay. \n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.Instrument}\n\t\t * @param {Object} [options] the options available for the synth \n\t\t * see defaults below\n\t\t * @example\n\t\t * var synth = new Tone.MembraneSynth().toMaster();\n\t\t * synth.triggerAttackRelease(\"C2\", \"8n\");\n\t\t */\n\t Tone.MembraneSynth = function (options) {\n\t options = this.defaultArg(options, Tone.MembraneSynth.defaults);\n\t Tone.Instrument.call(this, options);\n\t /**\n\t\t\t * The oscillator.\n\t\t\t * @type {Tone.OmniOscillator}\n\t\t\t */\n\t this.oscillator = new Tone.OmniOscillator(options.oscillator).start();\n\t /**\n\t\t\t * The amplitude envelope.\n\t\t\t * @type {Tone.AmplitudeEnvelope}\n\t\t\t */\n\t this.envelope = new Tone.AmplitudeEnvelope(options.envelope);\n\t /**\n\t\t\t * The number of octaves the pitch envelope ramps.\n\t\t\t * @type {Positive}\n\t\t\t */\n\t this.octaves = options.octaves;\n\t /**\n\t\t\t * The amount of time the frequency envelope takes. \n\t\t\t * @type {Time}\n\t\t\t */\n\t this.pitchDecay = options.pitchDecay;\n\t this.oscillator.chain(this.envelope, this.output);\n\t this._readOnly([\n\t 'oscillator',\n\t 'envelope'\n\t ]);\n\t };\n\t Tone.extend(Tone.MembraneSynth, Tone.Instrument);\n\t /**\n\t\t * @static\n\t\t * @type {Object}\n\t\t */\n\t Tone.MembraneSynth.defaults = {\n\t 'pitchDecay': 0.05,\n\t 'octaves': 10,\n\t 'oscillator': { 'type': 'sine' },\n\t 'envelope': {\n\t 'attack': 0.001,\n\t 'decay': 0.4,\n\t 'sustain': 0.01,\n\t 'release': 1.4,\n\t 'attackCurve': 'exponential'\n\t }\n\t };\n\t /**\n\t\t * Trigger the note at the given time with the given velocity. \n\t\t * \n\t\t * @param {Frequency} note the note\n\t\t * @param {Time} [time=now] the time, if not given is now\n\t\t * @param {number} [velocity=1] velocity defaults to 1\n\t\t * @returns {Tone.MembraneSynth} this\n\t\t * @example\n\t\t * kick.triggerAttack(60);\n\t\t */\n\t Tone.MembraneSynth.prototype.triggerAttack = function (note, time, velocity) {\n\t time = this.toSeconds(time);\n\t note = this.toFrequency(note);\n\t var maxNote = note * this.octaves;\n\t this.oscillator.frequency.setValueAtTime(maxNote, time);\n\t this.oscillator.frequency.exponentialRampToValueAtTime(note, time + this.toSeconds(this.pitchDecay));\n\t this.envelope.triggerAttack(time, velocity);\n\t return this;\n\t };\n\t /**\n\t\t * Trigger the release portion of the note.\n\t\t * \n\t\t * @param {Time} [time=now] the time the note will release\n\t\t * @returns {Tone.MembraneSynth} this\n\t\t */\n\t Tone.MembraneSynth.prototype.triggerRelease = function (time) {\n\t this.envelope.triggerRelease(time);\n\t return this;\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.MembraneSynth} this\n\t\t */\n\t Tone.MembraneSynth.prototype.dispose = function () {\n\t Tone.Instrument.prototype.dispose.call(this);\n\t this._writable([\n\t 'oscillator',\n\t 'envelope'\n\t ]);\n\t this.oscillator.dispose();\n\t this.oscillator = null;\n\t this.envelope.dispose();\n\t this.envelope = null;\n\t return this;\n\t };\n\t return Tone.MembraneSynth;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * Inharmonic ratio of frequencies based on the Roland TR-808\n\t\t * Taken from https://ccrma.stanford.edu/papers/tr-808-cymbal-physically-informed-circuit-bendable-digital-model\n\t\t * @private\n\t\t * @static\n\t\t * @type {Array}\n\t\t */\n\t var inharmRatios = [\n\t 1,\n\t 1.483,\n\t 1.932,\n\t 2.546,\n\t 2.63,\n\t 3.897\n\t ];\n\t /**\n\t\t * @class A highly inharmonic and spectrally complex source with a highpass filter\n\t\t * and amplitude envelope which is good for making metalophone sounds. Based\n\t\t * on CymbalSynth by [@polyrhythmatic](https://github.com/polyrhythmatic).\n\t\t * Inspiration from [Sound on Sound](http://www.soundonsound.com/sos/jul02/articles/synthsecrets0702.asp).\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.Instrument}\n\t\t * @param {Object} [options] The options availble for the synth\n\t\t * see defaults below\n\t\t */\n\t Tone.MetalSynth = function (options) {\n\t options = this.defaultArg(options, Tone.MetalSynth.defaults);\n\t Tone.Instrument.call(this, options);\n\t /**\n\t\t\t * The frequency of the cymbal\n\t\t\t * @type {Frequency}\n\t\t\t * @signal\n\t\t\t */\n\t this.frequency = new Tone.Signal(options.frequency, Tone.Type.Frequency);\n\t /**\n\t\t\t * The array of FMOscillators\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._oscillators = [];\n\t /**\n\t\t\t * The frequency multipliers\n\t\t\t * @type {Array}\n\t\t\t * @private\n\t\t\t */\n\t this._freqMultipliers = [];\n\t /**\n\t\t\t * The amplitude for the body\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._amplitue = new Tone.Gain(0).connect(this.output);\n\t /**\n\t\t\t * highpass the output\n\t\t\t * @type {Tone.Filter}\n\t\t\t * @private\n\t\t\t */\n\t this._highpass = new Tone.Filter({\n\t 'type': 'highpass',\n\t 'Q': -3.0102999566398125\n\t }).connect(this._amplitue);\n\t /**\n\t\t\t * The number of octaves the highpass\n\t\t\t * filter frequency ramps\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._octaves = options.octaves;\n\t /**\n\t\t\t * Scale the body envelope\n\t\t\t * for the bandpass\n\t\t\t * @type {Tone.Scale}\n\t\t\t * @private\n\t\t\t */\n\t this._filterFreqScaler = new Tone.Scale(options.resonance, 7000);\n\t /**\n\t\t\t * The envelope which is connected both to the \n\t\t\t * amplitude and highpass filter's cutoff frequency\n\t\t\t * @type {Tone.Envelope}\n\t\t\t */\n\t this.envelope = new Tone.Envelope({\n\t 'attack': options.envelope.attack,\n\t 'attackCurve': 'linear',\n\t 'decay': options.envelope.decay,\n\t 'sustain': 0,\n\t 'release': options.envelope.release\n\t }).chain(this._filterFreqScaler, this._highpass.frequency);\n\t this.envelope.connect(this._amplitue.gain);\n\t for (var i = 0; i < inharmRatios.length; i++) {\n\t var osc = new Tone.FMOscillator({\n\t 'type': 'square',\n\t 'modulationType': 'square',\n\t 'harmonicity': options.harmonicity,\n\t 'modulationIndex': options.modulationIndex\n\t });\n\t osc.connect(this._highpass).start(0);\n\t this._oscillators[i] = osc;\n\t var mult = new Tone.Multiply(inharmRatios[i]);\n\t this._freqMultipliers[i] = mult;\n\t this.frequency.chain(mult, osc.frequency);\n\t }\n\t //set the octaves\n\t this.octaves = options.octaves;\n\t };\n\t Tone.extend(Tone.MetalSynth, Tone.Instrument);\n\t /**\n\t\t * default values\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.MetalSynth.defaults = {\n\t 'frequency': 200,\n\t 'envelope': {\n\t 'attack': 0.001,\n\t 'decay': 1.4,\n\t 'release': 0.2\n\t },\n\t 'harmonicity': 5.1,\n\t 'modulationIndex': 32,\n\t 'resonance': 4000,\n\t 'octaves': 1.5\n\t };\n\t /**\n\t\t * Trigger the attack.\n\t\t * @param {Time} time When the attack should be triggered.\n\t\t * @param {NormalRange=1} velocity The velocity that the envelope should be triggered at.\n\t\t * @return {Tone.MetalSynth} this\n\t\t */\n\t Tone.MetalSynth.prototype.triggerAttack = function (time, vel) {\n\t time = this.toSeconds(time);\n\t vel = this.defaultArg(vel, 1);\n\t this.envelope.triggerAttack(time, vel);\n\t return this;\n\t };\n\t /**\n\t\t * Trigger the release of the envelope.\n\t\t * @param {Time} time When the release should be triggered.\n\t\t * @return {Tone.MetalSynth} this\n\t\t */\n\t Tone.MetalSynth.prototype.triggerRelease = function (time) {\n\t time = this.toSeconds(time);\n\t this.envelope.triggerRelease(time);\n\t return this;\n\t };\n\t /**\n\t\t * Trigger the attack and release of the envelope after the given \n\t\t * duration. \n\t\t * @param {Time} duration The duration before triggering the release\n\t\t * @param {Time} time When the attack should be triggered.\n\t\t * @param {NormalRange=1} velocity The velocity that the envelope should be triggered at.\n\t\t * @return {Tone.MetalSynth} this\n\t\t */\n\t Tone.MetalSynth.prototype.triggerAttackRelease = function (duration, time, velocity) {\n\t time = this.toSeconds(time);\n\t duration = this.toSeconds(duration);\n\t this.triggerAttack(time, velocity);\n\t this.triggerRelease(time + duration);\n\t return this;\n\t };\n\t /**\n\t\t * The modulationIndex of the oscillators which make up the source.\n\t\t * see Tone.FMOscillator.modulationIndex\n\t\t * @memberOf Tone.MetalSynth#\n\t\t * @type {Positive}\n\t\t * @name modulationIndex\n\t\t */\n\t Object.defineProperty(Tone.MetalSynth.prototype, 'modulationIndex', {\n\t get: function () {\n\t return this._oscillators[0].modulationIndex.value;\n\t },\n\t set: function (val) {\n\t for (var i = 0; i < this._oscillators.length; i++) {\n\t this._oscillators[i].modulationIndex.value = val;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The harmonicity of the oscillators which make up the source.\n\t\t * see Tone.FMOscillator.harmonicity\n\t\t * @memberOf Tone.MetalSynth#\n\t\t * @type {Positive}\n\t\t * @name harmonicity\n\t\t */\n\t Object.defineProperty(Tone.MetalSynth.prototype, 'harmonicity', {\n\t get: function () {\n\t return this._oscillators[0].harmonicity.value;\n\t },\n\t set: function (val) {\n\t for (var i = 0; i < this._oscillators.length; i++) {\n\t this._oscillators[i].harmonicity.value = val;\n\t }\n\t }\n\t });\n\t /**\n\t\t * The frequency of the highpass filter attached to the envelope\n\t\t * @memberOf Tone.MetalSynth#\n\t\t * @type {Frequency}\n\t\t * @name resonance\n\t\t */\n\t Object.defineProperty(Tone.MetalSynth.prototype, 'resonance', {\n\t get: function () {\n\t return this._filterFreqScaler.min;\n\t },\n\t set: function (val) {\n\t this._filterFreqScaler.min = val;\n\t this.octaves = this._octaves;\n\t }\n\t });\n\t /**\n\t\t * The number of octaves above the \"resonance\" frequency\n\t\t * that the filter ramps during the attack/decay envelope\n\t\t * @memberOf Tone.MetalSynth#\n\t\t * @type {Number}\n\t\t * @name octaves\n\t\t */\n\t Object.defineProperty(Tone.MetalSynth.prototype, 'octaves', {\n\t get: function () {\n\t return this._octaves;\n\t },\n\t set: function (octs) {\n\t this._octaves = octs;\n\t this._filterFreqScaler.max = this._filterFreqScaler.min * Math.pow(2, octs);\n\t }\n\t });\n\t /**\n\t\t * Clean up\n\t\t * @returns {Tone.MetalSynth} this\n\t\t */\n\t Tone.MetalSynth.prototype.dispose = function () {\n\t Tone.Instrument.prototype.dispose.call(this);\n\t for (var i = 0; i < this._oscillators.length; i++) {\n\t this._oscillators[i].dispose();\n\t this._freqMultipliers[i].dispose();\n\t }\n\t this._oscillators = null;\n\t this._freqMultipliers = null;\n\t this.frequency.dispose();\n\t this.frequency = null;\n\t this._filterFreqScaler.dispose();\n\t this._filterFreqScaler = null;\n\t this._amplitue.dispose();\n\t this._amplitue = null;\n\t this.envelope.dispose();\n\t this.envelope = null;\n\t this._highpass.dispose();\n\t this._highpass = null;\n\t };\n\t return Tone.MetalSynth;\n\t});\n\tModule(function (Tone) {\n\t /**\n\t\t * BufferSource polyfill\n\t\t */\n\t if (window.AudioBufferSourceNode && !AudioBufferSourceNode.prototype.start) {\n\t AudioBufferSourceNode.prototype.start = AudioBufferSourceNode.prototype.noteGrainOn;\n\t AudioBufferSourceNode.prototype.stop = AudioBufferSourceNode.prototype.noteOff;\n\t }\n\t /**\n\t\t * @class Wrapper around the native BufferSourceNode.\n\t\t * @param {AudioBuffer|Tone.Buffer} buffer The buffer to play\n\t\t * @param {Function} onended The callback to invoke when the \n\t\t * buffer is done playing.\n\t\t */\n\t Tone.BufferSource = function () {\n\t var options = this.optionsObject(arguments, [\n\t 'buffer',\n\t 'onended'\n\t ], Tone.BufferSource.defaults);\n\t /**\n\t\t\t * The callback to invoke after the \n\t\t\t * buffer source is done playing. \n\t\t\t * @type {Function}\n\t\t\t */\n\t this.onended = options.onended;\n\t /**\n\t\t\t * The time that the buffer was started.\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._startTime = -1;\n\t /**\n\t\t\t * The time that the buffer is scheduled to stop.\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._stopTime = -1;\n\t /**\n\t\t\t * The gain node which envelopes the BufferSource\n\t\t\t * @type {Tone.Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._gainNode = this.output = new Tone.Gain();\n\t /**\n\t\t\t * The buffer source\n\t\t\t * @type {AudioBufferSourceNode}\n\t\t\t * @private\n\t\t\t */\n\t this._source = this.context.createBufferSource();\n\t this._source.connect(this._gainNode);\n\t /**\n\t\t\t * The playbackRate of the buffer\n\t\t\t * @type {Positive}\n\t\t\t * @signal\n\t\t\t */\n\t this.playbackRate = new Tone.Param(this._source.playbackRate, Tone.Type.Positive);\n\t /**\n\t\t\t * The fadeIn time of the amplitude envelope.\n\t\t\t * @type {Time}\n\t\t\t */\n\t this.fadeIn = options.fadeIn;\n\t /**\n\t\t\t * The fadeOut time of the amplitude envelope.\n\t\t\t * @type {Time}\n\t\t\t */\n\t this.fadeOut = options.fadeOut;\n\t /**\n\t\t\t * The value that the buffer ramps to\n\t\t\t * @type {Gain}\n\t\t\t * @private\n\t\t\t */\n\t this._gain = 1;\n\t /**\n\t\t\t * The onended timeout\n\t\t\t * @type {Number}\n\t\t\t * @private\n\t\t\t */\n\t this._onendedTimeout = -1;\n\t //set the buffer initially\n\t if (!this.isUndef(options.buffer)) {\n\t this.buffer = options.buffer;\n\t }\n\t this.loop = options.loop;\n\t };\n\t Tone.extend(Tone.BufferSource);\n\t /**\n\t\t * The defaults\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.BufferSource.defaults = {\n\t 'onended': Tone.noOp,\n\t 'fadeIn': 0,\n\t 'fadeOut': 0\n\t };\n\t /**\n\t\t * Returns the playback state of the source, either \"started\" or \"stopped\".\n\t\t * @type {Tone.State}\n\t\t * @readOnly\n\t\t * @memberOf Tone.BufferSource#\n\t\t * @name state\n\t\t */\n\t Object.defineProperty(Tone.BufferSource.prototype, 'state', {\n\t get: function () {\n\t var now = this.now();\n\t if (this._startTime !== -1 && now >= this._startTime && now < this._stopTime) {\n\t return Tone.State.Started;\n\t } else {\n\t return Tone.State.Stopped;\n\t }\n\t }\n\t });\n\t /**\n\t\t * Start the buffer\n\t\t * @param {Time} [startTime=now] When the player should start.\n\t\t * @param {Time} [offset=0] The offset from the beginning of the sample\n\t\t * to start at. \n\t\t * @param {Time=} duration How long the sample should play. If no duration\n\t\t * is given, it will default to the full length \n\t\t * of the sample (minus any offset)\n\t\t * @param {Gain} [gain=1] The gain to play the buffer back at.\n\t\t * @param {Time=} fadeInTime The optional fadeIn ramp time.\n\t\t * @return {Tone.BufferSource} this\n\t\t */\n\t Tone.BufferSource.prototype.start = function (time, offset, duration, gain, fadeInTime) {\n\t if (this._startTime !== -1) {\n\t throw new Error('Tone.BufferSource: can only be started once.');\n\t }\n\t if (this.buffer) {\n\t time = this.toSeconds(time);\n\t //if it's a loop the default offset is the loopstart point\n\t if (this.loop) {\n\t offset = this.defaultArg(offset, this.loopStart);\n\t } else {\n\t //otherwise the default offset is 0\n\t offset = this.defaultArg(offset, 0);\n\t }\n\t offset = this.toSeconds(offset);\n\t //the values in seconds\n\t time = this.toSeconds(time);\n\t this._source.start(time, offset);\n\t gain = this.defaultArg(gain, 1);\n\t this._gain = gain;\n\t //the fadeIn time\n\t if (this.isUndef(fadeInTime)) {\n\t fadeInTime = this.toSeconds(this.fadeIn);\n\t } else {\n\t fadeInTime = this.toSeconds(fadeInTime);\n\t }\n\t if (fadeInTime > 0) {\n\t this._gainNode.gain.setValueAtTime(0, time);\n\t this._gainNode.gain.linearRampToValueAtTime(this._gain, time + fadeInTime);\n\t } else {\n\t this._gainNode.gain.setValueAtTime(gain, time);\n\t }\n\t this._startTime = time + fadeInTime;\n\t if (!this.isUndef(duration)) {\n\t duration = this.defaultArg(duration, this.buffer.duration - offset);\n\t duration = this.toSeconds(duration);\n\t this.stop(time + duration + fadeInTime, fadeInTime);\n\t }\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Stop the buffer. Optionally add a ramp time to fade the \n\t\t * buffer out. \n\t\t * @param {Time=} time The time the buffer should stop.\n\t\t * @param {Time=} fadeOutTime How long the gain should fade out for\n\t\t * @return {Tone.BufferSource} this\n\t\t */\n\t Tone.BufferSource.prototype.stop = function (time, fadeOutTime) {\n\t if (this.buffer) {\n\t time = this.toSeconds(time);\n\t //the fadeOut time\n\t if (this.isUndef(fadeOutTime)) {\n\t fadeOutTime = this.toSeconds(this.fadeOut);\n\t } else {\n\t fadeOutTime = this.toSeconds(fadeOutTime);\n\t }\n\t this._stopTime = time + fadeOutTime;\n\t //cancel the end curve\n\t this._gainNode.gain.cancelScheduledValues(this._startTime + this.sampleTime);\n\t //set a new one\n\t if (fadeOutTime > 0) {\n\t this._gainNode.gain.setValueAtTime(this._gain, time);\n\t this._gainNode.gain.linearRampToValueAtTime(0, time + fadeOutTime);\n\t time += fadeOutTime;\n\t } else {\n\t this._gainNode.gain.setValueAtTime(0, time);\n\t }\n\t // fix for safari bug and old FF\n\t if (!this.isNumber(this._source.playbackState) || this._source.playbackState === 2) {\n\t this._source.stop(time);\n\t }\n\t clearTimeout(this._onendedTimeout);\n\t this._onendedTimeout = setTimeout(this._onended.bind(this), (this._stopTime - this.now()) * 1000);\n\t }\n\t return this;\n\t };\n\t /**\n\t\t * Internal callback when the buffer is ended. \n\t\t * Invokes `onended` and disposes the node.\n\t\t * @private\n\t\t */\n\t Tone.BufferSource.prototype._onended = function () {\n\t this.onended(this);\n\t this.dispose();\n\t };\n\t /**\n\t\t * If loop is true, the loop will start at this position. \n\t\t * @memberOf Tone.BufferSource#\n\t\t * @type {Time}\n\t\t * @name loopStart\n\t\t */\n\t Object.defineProperty(Tone.BufferSource.prototype, 'loopStart', {\n\t get: function () {\n\t return this._source.loopStart;\n\t },\n\t set: function (loopStart) {\n\t this._source.loopStart = this.toSeconds(loopStart);\n\t }\n\t });\n\t /**\n\t\t * If loop is true, the loop will end at this position.\n\t\t * @memberOf Tone.BufferSource#\n\t\t * @type {Time}\n\t\t * @name loopEnd\n\t\t */\n\t Object.defineProperty(Tone.BufferSource.prototype, 'loopEnd', {\n\t get: function () {\n\t return this._source.loopEnd;\n\t },\n\t set: function (loopEnd) {\n\t this._source.loopEnd = this.toSeconds(loopEnd);\n\t }\n\t });\n\t /**\n\t\t * The audio buffer belonging to the player. \n\t\t * @memberOf Tone.BufferSource#\n\t\t * @type {AudioBuffer}\n\t\t * @name buffer\n\t\t */\n\t Object.defineProperty(Tone.BufferSource.prototype, 'buffer', {\n\t get: function () {\n\t if (this._source) {\n\t return this._source.buffer;\n\t } else {\n\t return null;\n\t }\n\t },\n\t set: function (buffer) {\n\t if (buffer instanceof Tone.Buffer) {\n\t this._source.buffer = buffer.get();\n\t } else {\n\t this._source.buffer = buffer;\n\t }\n\t }\n\t });\n\t /**\n\t\t * If the buffer should loop once it's over. \n\t\t * @memberOf Tone.BufferSource#\n\t\t * @type {boolean}\n\t\t * @name loop\n\t\t */\n\t Object.defineProperty(Tone.BufferSource.prototype, 'loop', {\n\t get: function () {\n\t return this._source.loop;\n\t },\n\t set: function (loop) {\n\t this._source.loop = loop;\n\t }\n\t });\n\t /**\n\t\t * Clean up.\n\t\t * @return {Tone.BufferSource} this\n\t\t */\n\t Tone.BufferSource.prototype.dispose = function () {\n\t this.onended = null;\n\t if (this._source) {\n\t this._source.disconnect();\n\t this._source = null;\n\t }\n\t if (this._gainNode) {\n\t this._gainNode.dispose();\n\t this._gainNode = null;\n\t }\n\t this._startTime = -1;\n\t this.playbackRate = null;\n\t this.output = null;\n\t clearTimeout(this._onendedTimeout);\n\t return this;\n\t };\n\t return Tone.BufferSource;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.Noise is a noise generator. It uses looped noise buffers to save on performance.\n\t\t * Tone.Noise supports the noise types: \"pink\", \"white\", and \"brown\". Read more about\n\t\t * colors of noise on [Wikipedia](https://en.wikipedia.org/wiki/Colors_of_noise).\n\t\t *\n\t\t * @constructor\n\t\t * @extends {Tone.Source}\n\t\t * @param {string} type the noise type (white|pink|brown)\n\t\t * @example\n\t\t * //initialize the noise and start\n\t\t * var noise = new Tone.Noise(\"pink\").start();\n\t\t * \n\t\t * //make an autofilter to shape the noise\n\t\t * var autoFilter = new Tone.AutoFilter({\n\t\t * \t\"frequency\" : \"8m\", \n\t\t * \t\"min\" : 800, \n\t\t * \t\"max\" : 15000\n\t\t * }).connect(Tone.Master);\n\t\t * \n\t\t * //connect the noise\n\t\t * noise.connect(autoFilter);\n\t\t * //start the autofilter LFO\n\t\t * autoFilter.start()\n\t\t */\n\t Tone.Noise = function () {\n\t var options = this.optionsObject(arguments, ['type'], Tone.Noise.defaults);\n\t Tone.Source.call(this, options);\n\t /**\n\t\t\t * @private\n\t\t\t * @type {AudioBufferSourceNode}\n\t\t\t */\n\t this._source = null;\n\t /**\n\t\t\t * the buffer\n\t\t\t * @private\n\t\t\t * @type {AudioBuffer}\n\t\t\t */\n\t this._type = options.type;\n\t /**\n\t\t\t * The playback rate of the noise. Affects\n\t\t\t * the \"frequency\" of the noise.\n\t\t\t * @type {Positive}\n\t\t\t * @signal\n\t\t\t */\n\t this._playbackRate = options.playbackRate;\n\t };\n\t Tone.extend(Tone.Noise, Tone.Source);\n\t /**\n\t\t * the default parameters\n\t\t *\n\t\t * @static\n\t\t * @const\n\t\t * @type {Object}\n\t\t */\n\t Tone.Noise.defaults = {\n\t 'type': 'white',\n\t 'playbackRate': 1\n\t };\n\t /**\n\t\t * The type of the noise. Can be \"white\", \"brown\", or \"pink\". \n\t\t * @memberOf Tone.Noise#\n\t\t * @type {string}\n\t\t * @name type\n\t\t * @example\n\t\t * noise.type = \"white\";\n\t\t */\n\t Object.defineProperty(Tone.Noise.prototype, 'type', {\n\t get: function () {\n\t return this._type;\n\t },\n\t set: function (type) {\n\t if (this._type !== type) {\n\t if (type in _noiseBuffers) {\n\t this._type = type;\n\t //if it's playing, stop and restart it\n\t if (this.state === Tone.State.Started) {\n\t var now = this.now() + this.blockTime;\n\t this._stop(now);\n\t this._start(now);\n\t }\n\t } else {\n\t throw new TypeError('Tone.Noise: invalid type: ' + type);\n\t }\n\t }\n\t }\n\t });\n\t /**\n\t\t * The playback rate of the noise. Affects\n\t\t * the \"frequency\" of the noise.\n\t\t * @type {Positive}\n\t\t * @signal\n\t\t */\n\t Object.defineProperty(Tone.Noise.prototype, 'playbackRate', {\n\t get: function () {\n\t return this._playbackRate;\n\t },\n\t set: function (rate) {\n\t this._playbackRate = rate;\n\t if (this._source) {\n\t this._source.playbackRate.value = rate;\n\t }\n\t }\n\t });\n\t /**\n\t\t * internal start method\n\t\t *\n\t\t * @param {Time} time\n\t\t * @private\n\t\t */\n\t Tone.Noise.prototype._start = function (time) {\n\t var buffer = _noiseBuffers[this._type];\n\t this._source = new Tone.BufferSource(buffer).connect(this.output);\n\t this._source.loop = true;\n\t this._source.playbackRate.value = this._playbackRate;\n\t this._source.start(this.toSeconds(time), Math.random() * (buffer.duration - 0.001));\n\t };\n\t /**\n\t\t * internal stop method\n\t\t *\n\t\t * @param {Time} time\n\t\t * @private\n\t\t */\n\t Tone.Noise.prototype._stop = function (time) {\n\t if (this._source) {\n\t this._source.stop(this.toSeconds(time));\n\t this._source = null;\n\t }\n\t };\n\t /**\n\t\t * Clean up.\n\t\t * @returns {Tone.Noise} this\n\t\t */\n\t Tone.Noise.prototype.dispose = function () {\n\t Tone.Source.prototype.dispose.call(this);\n\t if (this._source !== null) {\n\t this._source.disconnect();\n\t this._source = null;\n\t }\n\t this._buffer = null;\n\t return this;\n\t };\n\t ///////////////////////////////////////////////////////////////////////////\n\t // THE BUFFERS\n\t ///////////////////////////////////////////////////////////////////////////\n\t //Noise buffer stats\n\t var bufferLength = 44100 * 5;\n\t var channels = 2;\n\t /**\n\t\t *\tthe noise arrays. only generated once on init\n\t\t * @static\n\t\t * @private\n\t\t * @type {Array}\n\t\t * borrowed heavily from https://github.com/zacharydenton/noise.js \n\t\t * (c) 2013 Zach Denton (MIT)\n\t\t */\n\t var _noiseArrays = {\n\t 'pink': function () {\n\t var buffer = [];\n\t for (var channelNum = 0; channelNum < channels; channelNum++) {\n\t var channel = new Float32Array(bufferLength);\n\t buffer[channelNum] = channel;\n\t var b0, b1, b2, b3, b4, b5, b6;\n\t b0 = b1 = b2 = b3 = b4 = b5 = b6 = 0;\n\t for (var i = 0; i < bufferLength; i++) {\n\t var white = Math.random() * 2 - 1;\n\t b0 = 0.99886 * b0 + white * 0.0555179;\n\t b1 = 0.99332 * b1 + white * 0.0750759;\n\t b2 = 0.969 * b2 + white * 0.153852;\n\t b3 = 0.8665 * b3 + white * 0.3104856;\n\t b4 = 0.55 * b4 + white * 0.5329522;\n\t b5 = -0.7616 * b5 - white * 0.016898;\n\t channel[i] = b0 + b1 + b2 + b3 + b4 + b5 + b6 + white * 0.5362;\n\t channel[i] *= 0.11;\n\t // (roughly) compensate for gain\n\t b6 = white * 0.115926;\n\t }\n\t }\n\t return buffer;\n\t }(),\n\t 'brown': function () {\n\t var buffer = [];\n\t for (var channelNum = 0; channelNum < channels; channelNum++) {\n\t var channel = new Float32Array(bufferLength);\n\t buffer[channelNum] = channel;\n\t var lastOut = 0;\n\t for (var i = 0; i < bufferLength; i++) {\n\t var white = Math.random() * 2 - 1;\n\t channel[i] = (lastOut + 0.02 * white) / 1.02;\n\t lastOut = channel[i];\n\t channel[i] *= 3.5; // (roughly) compensate for gain\n\t }\n\t }\n\t return buffer;\n\t }(),\n\t 'white': function () {\n\t var buffer = [];\n\t for (var channelNum = 0; channelNum < channels; channelNum++) {\n\t var channel = new Float32Array(bufferLength);\n\t buffer[channelNum] = channel;\n\t for (var i = 0; i < bufferLength; i++) {\n\t channel[i] = Math.random() * 2 - 1;\n\t }\n\t }\n\t return buffer;\n\t }()\n\t };\n\t /**\n\t\t *\tstatic noise buffers\n\t\t * @static\n\t\t * @private\n\t\t * @type {Tone.Buffer}\n\t\t */\n\t var _noiseBuffers = {};\n\t //create the Tone.Buffers\n\t function createBuffers() {\n\t for (var type in _noiseArrays) {\n\t _noiseBuffers[type] = new Tone.Buffer().fromArray(_noiseArrays[type]);\n\t }\n\t }\n\t createBuffers();\n\t Tone.Context.on('init', createBuffers);\n\t return Tone.Noise;\n\t});\n\tModule(function (Tone) {\n\t \n\t /**\n\t\t * @class Tone.NoiseSynth is composed of a noise generator (Tone.Noise), one filter (Tone.Filter), \n\t\t * and two envelopes (Tone.Envelop). One envelope controls the amplitude\n\t\t * of the noise and the other is controls the cutoff frequency of the filter. \n\t\t *