import tensorflow as tf import numpy as np import math BATCH_SIZE = 8 HEIGHT = 30 WIDTH = 60 CHANNELS = 3 NEIGHBORHOOD_SIZE = 41 MAX_DISPLACEMENT = int(math.ceil(NEIGHBORHOOD_SIZE / 2.0)) STRIDE_2 = 2 assert(STRIDE_2 <= NEIGHBORHOOD_SIZE) # Define two feature maps fmA = tf.ones((BATCH_SIZE, HEIGHT, WIDTH, CHANNELS), dtype=tf.int32) fmB = tf.convert_to_tensor(np.random.randint(5, size=(BATCH_SIZE, HEIGHT, WIDTH, CHANNELS)), dtype=tf.int32) depth = int(math.floor((2.0 * MAX_DISPLACEMENT + 1) / STRIDE_2) ** 2) print('Output should be size:', (BATCH_SIZE, HEIGHT, WIDTH, depth)) print('Striding at values: ', [e for e in range(-MAX_DISPLACEMENT + 1, MAX_DISPLACEMENT, STRIDE_2)]) def main(): out = [] for i in range(-MAX_DISPLACEMENT + 1, MAX_DISPLACEMENT, STRIDE_2): # height for j in range(-MAX_DISPLACEMENT + 1, MAX_DISPLACEMENT, STRIDE_2): # width padded_a = tf.pad(fmA, [[0,0], [0, abs(i)], [0, abs(j)], [0, 0]]) padded_b = tf.pad(fmB, [[0, 0], [abs(i), 0], [abs(j), 0], [0, 0]]) m = padded_a * padded_b height_start_idx = 0 if i <= 0 else i height_end_idx = height_start_idx + HEIGHT width_start_idx = 0 if j <= 0 else j width_end_idx = width_start_idx + WIDTH cut = m[:, height_start_idx:height_end_idx, width_start_idx:width_end_idx, :] final = tf.reduce_sum(cut, 3) out.append(final) corr = tf.stack(out, 3) print('Output size: ', corr.shape) main()